9-j symbol

From testwiki
Jump to navigation Jump to search

Template:Short description

Jucys diagram for the Wigner 9-j symbol. The diagram describes a summation over six 3-jm symbols. Plus signs on each nodes indicate an anticlockwise reading of the lines for the 3-jm symbol, whereas minus signs indicate clockwise. Due to its symmetries, there are many ways in which the diagram can be drawn.

In physics, Wigner's 9-j symbols were introduced by Eugene Paul Wigner in 1937. They are related to recoupling coefficients in quantum mechanics involving four angular momenta:

(2j3+1)(2j6+1)(2j7+1)(2j8+1){j1j2j3j4j5j6j7j8j9} =((j1j2)j3,(j4j5)j6)j9|((j1j4)j7,(j2j5)j8)j9.

Recoupling of four angular momentum vectors

Coupling of two angular momenta 𝐣1 and 𝐣2 is the construction of simultaneous eigenfunctions of 𝐉2 and Jz, where 𝐉=𝐣1+𝐣2, as explained in the article on Clebsch–Gordan coefficients.

Coupling of three angular momenta can be done in several ways, as explained in the article on Racah W-coefficients. Using the notation and techniques of that article, total angular momentum states that arise from coupling the angular momentum vectors 𝐣1, 𝐣2, 𝐣4, and 𝐣5 may be written as

|((j1j2)j3,(j4j5)j6)j9m9.

Alternatively, one may first couple 𝐣1 and 𝐣4 to 𝐣7 and 𝐣2 and 𝐣5 to 𝐣8, before coupling 𝐣7 and 𝐣8 to 𝐣9:

|((j1j4)j7,(j2j5)j8)j9m9.

Both sets of functions provide a complete, orthonormal basis for the space with dimension (2j1+1)(2j2+1)(2j4+1)(2j5+1) spanned by

|j1m1|j2m2|j4m4|j5m5,m1=j1,,j1;m2=j2,,j2;m4=j4,,j4;m5=j5,,j5.

Hence, the transformation between the two sets is unitary and the matrix elements of the transformation are given by the scalar products of the functions. As in the case of the Racah W-coefficients the matrix elements are independent of the total angular momentum projection quantum number (m9):

|((j1j4)j7,(j2j5)j8)j9m9=j3j6|((j1j2)j3,(j4j5)j6)j9m9((j1j2)j3,(j4j5)j6)j9|((j1j4)j7,(j2j5)j8)j9.

Symmetry relations

A 9-j symbol is invariant under reflection about either diagonal as well as even permutations of its rows or columns:

{j1j2j3j4j5j6j7j8j9}={j1j4j7j2j5j8j3j6j9}={j9j6j3j8j5j2j7j4j1}={j7j4j1j9j6j3j8j5j2}.

An odd permutation of rows or columns yields a phase factor (1)S, where

S=i=19ji.

For example:

{j1j2j3j4j5j6j7j8j9}=(1)S{j4j5j6j1j2j3j7j8j9}=(1)S{j2j1j3j5j4j6j8j7j9}.

Reduction to 6j symbols

The 9-j symbols can be calculated as sums over triple-products of 6-j symbols where the summation extends over all Template:Math admitted by the triangle conditions in the factors:

{j1j2j3j4j5j6j7j8j9}=x(1)2x(2x+1){j1j4j7j8j9x}{j2j5j8j4xj6}{j3j6j9xj1j2}.

Special case

When j9=0 the 9-j symbol is proportional to a 6-j symbol:

{j1j2j3j4j5j6j7j80}=δj3,j6δj7,j8(2j3+1)(2j7+1)(1)j2+j3+j4+j7{j1j2j3j5j4j7}.

Orthogonality relation

The 9-j symbols satisfy this orthogonality relation:

j7j8(2j7+1)(2j8+1){j1j2j3j4j5j6j7j8j9}{j1j2j3j4j5j6j7j8j9}=δj3j3δj6j6{j1j2j3}{j4j5j6}{j3j6j9}(2j3+1)(2j6+1).

The triangular delta Template:Math is equal to 1 when the triad (j1, j2, j3) satisfies the triangle conditions, and zero otherwise.

3n-j symbols

The 6-j symbol is the first representative, Template:Math, of Template:Math-j symbols that are defined as sums of products of Template:Math of Wigner's 3-jm coefficients. The sums are over all combinations of Template:Math that the Template:Math-j coefficients admit, i.e., which lead to non-vanishing contributions.

If each 3-jm factor is represented by a vertex and each j by an edge, these Template:Math-j symbols can be mapped on certain 3-regular graphs with Template:Math edges and Template:Math nodes. The 6-j symbol is associated with the K4 graph on 4 vertices, the 9-j symbol with the utility graph on 6 vertices (K3,3), and the two distinct (non-isomorphic) 12-j symbols with the Q3 and Wagner graphs on 8 vertices. Symmetry relations are generally representative of the automorphism group of these graphs.

See also

References

Template:No footnotes