Order-4 hexagonal tiling honeycomb
| Order-4 hexagonal tiling honeycomb | |
|---|---|
Perspective projection view within Poincaré disk model | |
| Type | Hyperbolic regular honeycomb Paracompact uniform honeycomb |
| Schläfli symbols | {6,3,4} {6,31,1} t0,1{(3,6)2} |
| Coxeter diagrams | Template:CDD Template:CDD ↔ Template:CDD Template:CDD Template:CDD ↔ Template:CDD ↔ Template:CDD
|
| Cells | {6,3} |
| Faces | hexagon {6} |
| Edge figure | square {4} |
| Vertex figure | octahedron |
| Dual | Order-6 cubic honeycomb |
| Coxeter groups | , [4,3,6] , [6,31,1] , [(6,3)[2]] |
| Properties | Regular, quasiregular |
In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.
The Schläfli symbol of the order-4 hexagonal tiling honeycomb is {6,3,4}. Since that of the hexagonal tiling is {6,3}, this honeycomb has four such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the octahedron is {3,4}, the vertex figure of this honeycomb is an octahedron. Thus, eight hexagonal tilings meet at each vertex of this honeycomb, and the six edges meeting at each vertex lie along three orthogonal axes.[1]
Images
Perspective projection |
One cell, viewed from outside the Poincare sphere |
The vertices of a t{(3,∞,3)}, Template:CDD tiling exist as a 2-hypercycle within this honeycomb |
The honeycomb is analogous to the H2 order-4 apeirogonal tiling, {∞,4}, shown here with one green apeirogon outlined by its horocycle |
Symmetry

The order-4 hexagonal tiling honeycomb has three reflective simplex symmetry constructions.
The half-symmetry uniform construction {6,31,1} has two types (colors) of hexagonal tilings, with Coxeter diagram Template:CDD ↔ Template:CDD. A quarter-symmetry construction also exists, with four colors of hexagonal tilings: Template:CDD.
An additional two reflective symmetries exist with non-simplectic fundamental domains: [6,3*,4], which is index 6, with Coxeter diagram Template:CDD; and [6,(3,4)*], which is index 48. The latter has a cubic fundamental domain, and an octahedral Coxeter diagram with three axial infinite branches:
. It can be seen as using eight colors to color the hexagonal tilings of the honeycomb.
The order-4 hexagonal tiling honeycomb contains Template:CDD, which tile 2-hypercycle surfaces and are similar to the truncated infinite-order triangular tiling, Template:CDD:
Related polytopes and honeycombs
The order-4 hexagonal tiling honeycomb is a regular hyperbolic honeycomb in 3-space, and one of 11 which are paracompact. Template:Regular paracompact H3 honeycombs
There are fifteen uniform honeycombs in the [6,3,4] Coxeter group family, including this regular form, and its dual, the order-6 cubic honeycomb. Template:634 family
The order-4 hexagonal tiling honeycomb has a related alternated honeycomb, Template:CDD ↔ Template:CDD, with triangular tiling and octahedron cells.
It is a part of sequence of regular honeycombs of the form {6,3,p}, all of which are composed of hexagonal tiling cells: Template:Hexagonal tiling cell tessellations
This honeycomb is also related to the 16-cell, cubic honeycomb and order-4 dodecahedral honeycomb, all of which have octahedral vertex figures. Template:Octahedral vertex figure tessellations
The aforementioned honeycombs are also quasiregular:
| Regular and Quasiregular honeycombs: {p,3,4} and {p,31,1} | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Space | Euclidean 4-space | Euclidean 3-space | Hyperbolic 3-space | ||||||||
| Name | {3,3,4} {3,31,1} = |
{4,3,4} {4,31,1} = |
{5,3,4} {5,31,1} = |
{6,3,4} {6,31,1} = | |||||||
| Coxeter diagram |
Template:CDD = Template:CDD | Template:CDD = Template:CDD | Template:CDD = Template:CDD | Template:CDD = Template:CDD | |||||||
| Image | |||||||||||
| Cells {p,3} |
Template:CDD |
Template:CDD |
Template:CDD |
Template:CDD | |||||||
Rectified order-4 hexagonal tiling honeycomb
| Rectified order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbols | r{6,3,4} or t1{6,3,4} |
| Coxeter diagrams | Template:CDD Template:CDD ↔ Template:CDD Template:CDD ↔ Template:CDD Template:CDD ↔ Template:CDD |
| Cells | {3,4} r{6,3} |
| Faces | triangle {3} hexagon {6} |
| Vertex figure | square prism |
| Coxeter groups | , [4,3,6] , [4,3[3]] , [6,31,1] , [3[]×[]] |
| Properties | Vertex-transitive, edge-transitive |
The rectified order-4 hexagonal tiling honeycomb, t1{6,3,4}, Template:CDD has octahedral and trihexagonal tiling facets, with a square prism vertex figure.
It is similar to the 2D hyperbolic tetraapeirogonal tiling, r{∞,4}, Template:CDD which alternates apeirogonal and square faces:
Truncated order-4 hexagonal tiling honeycomb
| Truncated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | t{6,3,4} or t0,1{6,3,4} |
| Coxeter diagram | Template:CDD Template:CDD ↔ Template:CDD |
| Cells | {3,4} t{6,3} |
| Faces | triangle {3} dodecagon {12} |
| Vertex figure | square pyramid |
| Coxeter groups | , [4,3,6] , [6,31,1] |
| Properties | Vertex-transitive |
The truncated order-4 hexagonal tiling honeycomb, t0,1{6,3,4}, Template:CDD has octahedron and truncated hexagonal tiling facets, with a square pyramid vertex figure.
It is similar to the 2D hyperbolic truncated order-4 apeirogonal tiling, t{∞,4}, Template:CDD with apeirogonal and square faces:
Bitruncated order-4 hexagonal tiling honeycomb
| Bitruncated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | 2t{6,3,4} or t1,2{6,3,4} |
| Coxeter diagram | Template:CDD Template:CDD ↔ Template:CDD Template:CDD ↔ Template:CDD Template:CDD ↔ Template:CDD |
| Cells | t{4,3} t{3,6} |
| Faces | square {4} hexagon {6} |
| Vertex figure | digonal disphenoid |
| Coxeter groups | , [4,3,6] , [4,3[3]] , [6,31,1] , [3[]×[]] |
| Properties | Vertex-transitive |
The bitruncated order-4 hexagonal tiling honeycomb, t1,2{6,3,4}, Template:CDD has truncated octahedron and hexagonal tiling cells, with a digonal disphenoid vertex figure.
Cantellated order-4 hexagonal tiling honeycomb
| Cantellated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | rr{6,3,4} or t0,2{6,3,4} |
| Coxeter diagram | Template:CDD Template:CDD ↔ Template:CDD |
| Cells | r{3,4} {}x{4} rr{6,3} |
| Faces | triangle {3} square {4} hexagon {6} |
| Vertex figure | wedge |
| Coxeter groups | , [4,3,6] , [6,31,1] |
| Properties | Vertex-transitive |
The cantellated order-4 hexagonal tiling honeycomb, t0,2{6,3,4}, Template:CDD has cuboctahedron, cube, and rhombitrihexagonal tiling cells, with a wedge vertex figure.
Cantitruncated order-4 hexagonal tiling honeycomb
| Cantitruncated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | tr{6,3,4} or t0,1,2{6,3,4} |
| Coxeter diagram | Template:CDD Template:CDD ↔ Template:CDD |
| Cells | t{3,4} {}x{4} tr{6,3} |
| Faces | square {4} hexagon {6} dodecagon {12} |
| Vertex figure | mirrored sphenoid |
| Coxeter groups | , [4,3,6] , [6,31,1] |
| Properties | Vertex-transitive |
The cantitruncated order-4 hexagonal tiling honeycomb, t0,1,2{6,3,4}, Template:CDD has truncated octahedron, cube, and truncated trihexagonal tiling cells, with a mirrored sphenoid vertex figure.
Runcinated order-4 hexagonal tiling honeycomb
| Runcinated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | t0,3{6,3,4} |
| Coxeter diagram | Template:CDD Template:CDD ↔ Template:CDD |
| Cells | {4,3} {}x{4} {6,3} {}x{6} |
| Faces | square {4} hexagon {6} |
| Vertex figure | irregular triangular antiprism |
| Coxeter groups | , [4,3,6] |
| Properties | Vertex-transitive |
The runcinated order-4 hexagonal tiling honeycomb, t0,3{6,3,4}, Template:CDD has cube, hexagonal tiling and hexagonal prism cells, with an irregular triangular antiprism vertex figure.
It contains the 2D hyperbolic rhombitetrahexagonal tiling, rr{4,6}, Template:CDD with square and hexagonal faces. The tiling also has a half symmetry construction Template:CDD.
| Template:CDD | Template:CDD = Template:CDD |
|---|
Runcitruncated order-4 hexagonal tiling honeycomb
| Runcitruncated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | t0,1,3{6,3,4} |
| Coxeter diagram | Template:CDD |
| Cells | rr{3,4} {}x{4} {}x{12} t{6,3} |
| Faces | triangle {3} square {4} dodecagon {12} |
| Vertex figure | isosceles-trapezoidal pyramid |
| Coxeter groups | , [4,3,6] |
| Properties | Vertex-transitive |
The runcitruncated order-4 hexagonal tiling honeycomb, t0,1,3{6,3,4}, Template:CDD has rhombicuboctahedron, cube, dodecagonal prism, and truncated hexagonal tiling cells, with an isosceles-trapezoidal pyramid vertex figure.
Runcicantellated order-4 hexagonal tiling honeycomb
The runcicantellated order-4 hexagonal tiling honeycomb is the same as the runcitruncated order-6 cubic honeycomb.
Omnitruncated order-4 hexagonal tiling honeycomb
| Omnitruncated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | t0,1,2,3{6,3,4} |
| Coxeter diagram | Template:CDD |
| Cells | tr{4,3} tr{6,3} {}x{12} {}x{8} |
| Faces | square {4} hexagon {6} octagon {8} dodecagon {12} |
| Vertex figure | irregular tetrahedron |
| Coxeter groups | , [4,3,6] |
| Properties | Vertex-transitive |
The omnitruncated order-4 hexagonal tiling honeycomb, t0,1,2,3{6,3,4}, Template:CDD has truncated cuboctahedron, truncated trihexagonal tiling, dodecagonal prism, and octagonal prism cells, with an irregular tetrahedron vertex figure.
Alternated order-4 hexagonal tiling honeycomb
| Alternated order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb Semiregular honeycomb |
| Schläfli symbols | h{6,3,4} |
| Coxeter diagrams | Template:CDD ↔ Template:CDD |
| Cells | {3[3]} {3,4} |
| Faces | triangle {3} |
| Vertex figure | truncated octahedron |
| Coxeter groups | , [4,3[3]] |
| Properties | Vertex-transitive, edge-transitive, quasiregular |
The alternated order-4 hexagonal tiling honeycomb, Template:CDD ↔ Template:CDD, is composed of triangular tiling and octahedron cells, in a truncated octahedron vertex figure. Template:Clear
Cantic order-4 hexagonal tiling honeycomb
| Cantic order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbols | h2{6,3,4} |
| Coxeter diagrams | Template:CDD ↔ Template:CDD |
| Cells | h2{6,3} t{3,4} r{3,4} |
| Faces | triangle {3} square {4} hexagon {6} |
| Vertex figure | wedge |
| Coxeter groups | , [4,3[3]] |
| Properties | Vertex-transitive |
The cantic order-4 hexagonal tiling honeycomb, Template:CDD ↔ Template:CDD, is composed of trihexagonal tiling, truncated octahedron, and cuboctahedron cells, with a wedge vertex figure. Template:Clear
Runcic order-4 hexagonal tiling honeycomb
| Runcic order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbols | h3{6,3,4} |
| Coxeter diagrams | Template:CDD ↔ Template:CDD |
| Cells | {3[3]} rr{3,4} {4,3} {}x{3} |
| Faces | triangle {3} square {4} |
| Vertex figure | triangular cupola |
| Coxeter groups | , [4,3[3]] |
| Properties | Vertex-transitive |
The runcic order-4 hexagonal tiling honeycomb, Template:CDD ↔ Template:CDD, is composed of triangular tiling, rhombicuboctahedron, cube, and triangular prism cells, with a triangular cupola vertex figure. Template:Clear
Runcicantic order-4 hexagonal tiling honeycomb
| Runcicantic order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbols | h2,3{6,3,4} |
| Coxeter diagrams | Template:CDD ↔ Template:CDD |
| Cells | h2{6,3} tr{3,4} t{4,3} {}x{3} |
| Faces | triangle {3} square {4} hexagon {6} octagon {8} |
| Vertex figure | rectangular pyramid |
| Coxeter groups | , [4,3[3]] |
| Properties | Vertex-transitive |
The runcicantic order-4 hexagonal tiling honeycomb, Template:CDD ↔ Template:CDD, is composed of trihexagonal tiling, truncated cuboctahedron, truncated cube, and triangular prism cells, with a rectangular pyramid vertex figure. Template:Clear
Quarter order-4 hexagonal tiling honeycomb
| Quarter order-4 hexagonal tiling honeycomb | |
|---|---|
| Type | Paracompact uniform honeycomb |
| Schläfli symbol | q{6,3,4} |
| Coxeter diagram | Template:CDD ↔ Template:CDD |
| Cells | {3[3]} {3,3} t{3,3} h2{6,3} |
| Faces | triangle {3} hexagon {6} |
| Vertex figure | triangular cupola |
| Coxeter groups | , [3[]x[]] |
| Properties | Vertex-transitive |
The quarter order-4 hexagonal tiling honeycomb, q{6,3,4}, Template:CDD or Template:CDD, is composed of triangular tiling, trihexagonal tiling, tetrahedron, and truncated tetrahedron cells, with a triangular cupola vertex figure. Template:Clear
See also
- Convex uniform honeycombs in hyperbolic space
- Regular tessellations of hyperbolic 3-space
- Paracompact uniform honeycombs
References
- Coxeter, Regular Polytopes, 3rd. ed., Dover Publications, 1973. Template:Isbn. (Tables I and II: Regular polytopes and honeycombs, pp. 294–296)
- The Beauty of Geometry: Twelve Essays (1999), Dover Publications, Template:LCCN, Template:Isbn (Chapter 10, Regular Honeycombs in Hyperbolic Space) Table III
- Jeffrey R. Weeks The Shape of Space, 2nd edition Template:Isbn (Chapter 16-17: Geometries on Three-manifolds I, II)
- Norman Johnson Uniform Polytopes, Manuscript
- N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. Dissertation, University of Toronto, 1966
- N.W. Johnson: Geometries and Transformations, (2018) Chapter 13: Hyperbolic Coxeter groups
- ↑ Coxeter The Beauty of Geometry, 1999, Chapter 10, Table III