List of integrals of inverse trigonometric functions

From testwiki
Revision as of 00:45, 31 May 2023 by imported>Sbb (replaced lists of colon-indented <math> with {{plainlist}} of <math> (by SublimeText.Mediawiker))
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Trigonometry The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse trigonometric functions. For a complete list of integral formulas, see lists of integrals.

  • The inverse trigonometric functions are also known as the "arc functions".
  • C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives.
  • There are three common notations for inverse trigonometric functions. The arcsine function, for instance, could be written as sin−1, asin, or, as is used on this page, arcsin.
  • For each inverse trigonometric integration formula below there is a corresponding formula in the list of integrals of inverse hyperbolic functions.

Arcsine function integration formulas

Template:Startplainlist

  • arcsin(x)dx=xarcsin(x)+1x2+C
  • arcsin(ax)dx=xarcsin(ax)+1a2x2a+C
  • xarcsin(ax)dx=x2arcsin(ax)2arcsin(ax)4a2+x1a2x24a+C
  • x2arcsin(ax)dx=x3arcsin(ax)3+(a2x2+2)1a2x29a3+C
  • xmarcsin(ax)dx=xm+1arcsin(ax)m+1am+1xm+11a2x2dx,(m1)
  • arcsin(ax)2dx=2x+xarcsin(ax)2+21a2x2arcsin(ax)a+C
  • arcsin(ax)ndx=xarcsin(ax)n+n1a2x2arcsin(ax)n1an(n1)arcsin(ax)n2dx
  • arcsin(ax)ndx=xarcsin(ax)n+2(n+1)(n+2)+1a2x2arcsin(ax)n+1a(n+1)1(n+1)(n+2)arcsin(ax)n+2dx,(n1,2)

Template:Endplainlist

Arccosine function integration formulas

Template:Startplainlist

  • arccos(x)dx=xarccos(x)1x2+C
  • arccos(ax)dx=xarccos(ax)1a2x2a+C
  • xarccos(ax)dx=x2arccos(ax)2arccos(ax)4a2x1a2x24a+C
  • x2arccos(ax)dx=x3arccos(ax)3(a2x2+2)1a2x29a3+C
  • xmarccos(ax)dx=xm+1arccos(ax)m+1+am+1xm+11a2x2dx,(m1)
  • arccos(ax)2dx=2x+xarccos(ax)221a2x2arccos(ax)a+C
  • arccos(ax)ndx=xarccos(ax)nn1a2x2arccos(ax)n1an(n1)arccos(ax)n2dx
  • arccos(ax)ndx=xarccos(ax)n+2(n+1)(n+2)1a2x2arccos(ax)n+1a(n+1)1(n+1)(n+2)arccos(ax)n+2dx,(n1,2)

Template:Endplainlist

Arctangent function integration formulas

Template:Startplainlist

  • arctan(x)dx=xarctan(x)ln(x2+1)2+C
  • arctan(ax)dx=xarctan(ax)ln(a2x2+1)2a+C
  • xarctan(ax)dx=x2arctan(ax)2+arctan(ax)2a2x2a+C
  • x2arctan(ax)dx=x3arctan(ax)3+ln(a2x2+1)6a3x26a+C
  • xmarctan(ax)dx=xm+1arctan(ax)m+1am+1xm+1a2x2+1dx,(m1)

Template:Endplainlist

Arccotangent function integration formulas

Template:Startplainlist

  • arccot(x)dx=xarccot(x)+ln(x2+1)2+C
  • arccot(ax)dx=xarccot(ax)+ln(a2x2+1)2a+C
  • xarccot(ax)dx=x2arccot(ax)2+arccot(ax)2a2+x2a+C
  • x2arccot(ax)dx=x3arccot(ax)3ln(a2x2+1)6a3+x26a+C
  • xmarccot(ax)dx=xm+1arccot(ax)m+1+am+1xm+1a2x2+1dx,(m1)

Template:Endplainlist

Arcsecant function integration formulas

Template:Startplainlist

  • arcsec(x)dx=xarcsec(x)ln(|x|+x21)+C=xarcsec(x)arcosh|x|+C
  • arcsec(ax)dx=xarcsec(ax)1aarcosh|ax|+C
  • xarcsec(ax)dx=x2arcsec(ax)2x2a11a2x2+C
  • x2arcsec(ax)dx=x3arcsec(ax)3arcosh|ax|6a3x26a11a2x2+C
  • xmarcsec(ax)dx=xm+1arcsec(ax)m+11a(m+1)xm111a2x2dx,(m1)

Template:Endplainlist

Arccosecant function integration formulas

Template:Startplainlist

  • arccsc(x)dx=xarccsc(x)+ln(|x|+x21)+C=xarccsc(x)+arcosh|x|+C
  • arccsc(ax)dx=xarccsc(ax)+1aartanh11a2x2+C
  • xarccsc(ax)dx=x2arccsc(ax)2+x2a11a2x2+C
  • x2arccsc(ax)dx=x3arccsc(ax)3+16a3artanh11a2x2+x26a11a2x2+C
  • xmarccsc(ax)dx=xm+1arccsc(ax)m+1+1a(m+1)xm111a2x2dx,(m1)

Template:Endplainlist

See also

References

Template:Reflist

Template:Lists of integrals