List of integrals of trigonometric functions

From testwiki
Revision as of 16:43, 17 February 2025 by imported>Bruce1ee (fixed lint errors – stripped tags)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:More sources needed Template:Trigonometry The following is a list of integrals (antiderivative functions) of trigonometric functions. For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral.[1]

Generally, if the function sinx is any trigonometric function, and cosx is its derivative,

acosnxdx=ansinnx+C

In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.

Integrands involving only sine

Template:Startplainlist

  • sinaxdx=1acosax+C
  • sin2axdx=x214asin2ax+C=x212asinaxcosax+C
  • sin3axdx=cos3ax12a3cosax4a+C
  • xsin2axdx=x24x4asin2ax18a2cos2ax+C
  • x2sin2axdx=x36(x24a18a3)sin2axx4a2cos2ax+C
  • xsinaxdx=sinaxa2xcosaxa+C
  • (sinb1x)(sinb2x)dx=sin((b2b1)x)2(b2b1)sin((b1+b2)x)2(b1+b2)+C(for |b1||b2|)
  • sinnaxdx=sinn1axcosaxna+n1nsinn2axdx(for n>0)
  • dxsinax=1aln|cscax+cotax|+C
  • dxsinnax=cosaxa(1n)sinn1ax+n2n1dxsinn2ax(for n>1)
  • xnsinaxdx=xnacosax+naxn1cosaxdx=k=02kn(1)k+1xn2ka1+2kn!(n2k)!cosax+k=02k+1n(1)kxn12ka2+2kn!(n2k1)!sinax=k=0nxnka1+kn!(nk)!cos(ax+kπ2)(for n>0)
  • sinaxxdx=n=0(1)n(ax)2n+1(2n+1)(2n+1)!+C
  • sinaxxndx=sinax(n1)xn1+an1cosaxxn1dx
  • sin(ax2+bx+c)dx={aπ2cos(b24ac4a)S(2ax+b2aπ)+aπ2sin(b24ac4a)C(2ax+b2aπ)tob24ac>0aπ2cos(b24ac4a)S(2ax+b2aπ)aπ2sin(b24ac4a)C(2ax+b2aπ)tob24ac<0fora=0,a>0
  • dx1±sinax=1atan(ax2π4)+C
  • xdx1+sinax=xatan(ax2π4)+2a2ln|cos(ax2π4)|+C
  • xdx1sinax=xacot(π4ax2)+2a2ln|sin(π4ax2)|+C
  • sinaxdx1±sinax=±x+1atan(π4ax2)+C

Template:Endplainlist

Integrands involving only cosine

Template:Startplainlist

  • cosaxdx=1asinax+C
  • cos2axdx=x2+14asin2ax+C=x2+12asinaxcosax+C
  • cosnaxdx=cosn1axsinaxna+n1ncosn2axdx(for n>0)
  • xcosaxdx=cosaxa2+xsinaxa+C
  • x2cos2axdx=x36+(x24a18a3)sin2ax+x4a2cos2ax+C
  • xncosaxdx=xnsinaxanaxn1sinaxdx=k=02k+1n(1)kxn2k1a2+2kn!(n2k1)!cosax+k=02kn(1)kxn2ka1+2kn!(n2k)!sinax=k=0n(1)k/2xnka1+kn!(nk)!cos(ax(1)k+12π2)=k=0nxnka1+kn!(nk)!sin(ax+kπ2)(for n>0)
  • cosaxxdx=ln|ax|+k=1(1)k(ax)2k2k(2k)!+C
  • cosaxxndx=cosax(n1)xn1an1sinaxxn1dx(for n1)
  • dxcosax=1aln|tan(ax2+π4)|+C
  • dxcosnax=sinaxa(n1)cosn1ax+n2n1dxcosn2ax(for n>1)
  • dx1+cosax=1atanax2+C
  • dx1cosax=1acotax2+C
  • xdx1+cosax=xatanax2+2a2ln|cosax2|+C
  • xdx1cosax=xacotax2+2a2ln|sinax2|+C
  • cosaxdx1+cosax=x1atanax2+C
  • cosaxdx1cosax=x1acotax2+C
  • (cosa1x)(cosa2x)dx=sin((a2a1)x)2(a2a1)+sin((a2+a1)x)2(a2+a1)+C(for |a1||a2|)

Template:Endplainlist

Integrands involving only tangent

Template:Startplainlist

  • tanaxdx=1aln|cosax|+C=1aln|secax|+C
  • tan2xdx=tanxx+C
  • tannaxdx=1a(n1)tann1axtann2axdx(for n1)
  • dxqtanax+p=1p2+q2(px+qaln|qsinax+pcosax|)+C(for p2+q20)
  • dxtanax±1=±x2+12aln|sinax±cosax|+C
  • tanaxdxtanax±1=x212aln|sinax±cosax|+C

Template:Endplainlist

Integrands involving only secant

Template:Further

Template:Startplainlist

  • secaxdx=1aln|secax+tanax|+C=1aln|tan(ax2+π4)|+C=1aartanh(sinax)+C
  • sec2xdx=tanx+C
  • sec3xdx=12secxtanx+12ln|secx+tanx|+C.
  • secnaxdx=secn2axtanaxa(n1)+n2n1secn2axdx (for n1)
  • dxsecx+1=xtanx2+C
  • dxsecx1=xcotx2+C
  • sinxcosx=tanx

Template:Endplainlist

Integrands involving only cosecant

Template:Startplainlist

  • cscaxdx=1aln|cscax+cotax|+C=1aln|cscaxcotax|+C=1aln|tan(ax2)|+C
  • csc2xdx=cotx+C
  • csc3xdx=12cscxcotx12ln|cscx+cotx|+C=12cscxcotx+12ln|cscxcotx|+C
  • cscnaxdx=cscn2axcotaxa(n1)+n2n1cscn2axdx (for n1)
  • dxcscx+1=x2cotx2+1+C
  • dxcscx1=x+2cotx21+C

Template:Endplainlist

Integrands involving only cotangent

Template:Startplainlist

  • cotaxdx=1aln|sinax|+C
  • cot2xdx=cotxx+C
  • cotnaxdx=1a(n1)cotn1axcotn2axdx(for n1)
  • dx1+cotax=tanaxdxtanax+1=x212aln|sinax+cosax|+C
  • dx1cotax=tanaxdxtanax1=x2+12aln|sinaxcosax|+C

Template:Endplainlist

Integrands involving both sine and cosine

An integral that is a rational function of the sine and cosine can be evaluated using Bioche's rules.

Template:Startplainlist

  • dxcosax±sinax=1a2ln|tan(ax2±π8)|+C
  • dx(cosax±sinax)2=12atan(axπ4)+C
  • dx(cosx+sinx)n=12(n1)(sinxcosx(cosx+sinx)n1+(n2)dx(cosx+sinx)n2)
  • cosaxdxcosax+sinax=x2+12aln|sinax+cosax|+C
  • cosaxdxcosaxsinax=x212aln|sinaxcosax|+C
  • sinaxdxcosax+sinax=x212aln|sinax+cosax|+C
  • sinaxdxcosaxsinax=x212aln|sinaxcosax|+C
  • cosaxdx(sinax)(1+cosax)=14atan2ax2+12aln|tanax2|+C
  • cosaxdx(sinax)(1cosax)=14acot2ax212aln|tanax2|+C
  • sinaxdx(cosax)(1+sinax)=14acot2(ax2+π4)+12aln|tan(ax2+π4)|+C
  • sinaxdx(cosax)(1sinax)=14atan2(ax2+π4)12aln|tan(ax2+π4)|+C
  • (sinax)(cosax)dx=12asin2ax+C
  • (sina1x)(cosa2x)dx=cos((a1a2)x)2(a1a2)cos((a1+a2)x)2(a1+a2)+C(for |a1||a2|)
  • (sinnax)(cosax)dx=1a(n+1)sinn+1ax+C(for n1)
  • (sinax)(cosnax)dx=1a(n+1)cosn+1ax+C(for n1)
  • (sinnax)(cosmax)dx=(sinn1ax)(cosm+1ax)a(n+m)+n1n+m(sinn2ax)(cosmax)dx(for m,n>0)=(sinn+1ax)(cosm1ax)a(n+m)+m1n+m(sinnax)(cosm2ax)dx(for m,n>0)
  • dx(sinax)(cosax)=1aln|tanax|+C
  • dx(sinax)(cosnax)=1a(n1)cosn1ax+dx(sinax)(cosn2ax)(for n1)
  • dx(sinnax)(cosax)=1a(n1)sinn1ax+dx(sinn2ax)(cosax)(for n1)
  • sinaxdxcosnax=1a(n1)cosn1ax+C(for n1)
  • sin2axdxcosax=1asinax+1aln|tan(π4+ax2)|+C
  • sin2axdxcosnax=sinaxa(n1)cosn1ax1n1dxcosn2ax(for n1)
  • sin2x1+cos2xdx=2arctangant(tanx2)x(for x in]π2;+π2[)=2arctangant(tanx2)arctangant(tanx)(this time x being any real number )
  • sinnaxdxcosax=sinn1axa(n1)+sinn2axdxcosax(for n1)
  • sinnaxdxcosmax={sinn+1axa(m1)cosm1axnm+2m1sinnaxdxcosm2ax(for m1)sinn1axa(m1)cosm1axn1m1sinn2axdxcosm2ax(for m1)sinn1axa(nm)cosm1ax+n1nmsinn2axdxcosmax(for mn)
  • cosaxdxsinnax=1a(n1)sinn1ax+C(for n1)
  • cos2axdxsinax=1a(cosax+ln|tanax2|)+C
  • cos2axdxsinnax=1n1(cosaxasinn1ax+dxsinn2ax)(for n1)
  • cosnaxdxsinmax={cosn+1axa(m1)sinm1axnm+2m1cosnaxdxsinm2ax(for n1)cosn1axa(m1)sinm1axn1m1cosn2axdxsinm2ax(for m1)cosn1axa(nm)sinm1ax+n1nmcosn2axdxsinmax(for mn)

Template:Endplainlist

Integrands involving both sine and tangent

Template:Startplainlist

  • (sinax)(tanax)dx=1a(ln|secax+tanax|sinax)+C
  • tannaxdxsin2ax=1a(n1)tann1(ax)+C(for n1)

Template:Endplainlist

Integrand involving both cosine and tangent

Template:Startplainlist

  • tannaxdxcos2ax=1a(n+1)tann+1ax+C(for n1)

Template:Endplainlist

Integrand involving both sine and cotangent

Template:Startplainlist

  • cotnaxdxsin2ax=1a(n+1)cotn+1ax+C(for n1)

Template:Endplainlist

Integrand involving both cosine and cotangent

Template:Startplainlist

  • cotnaxdxcos2ax=1a(1n)tan1nax+C(for n1)

Template:Endplainlist

Integrand involving both secant and tangent

Template:Startplainlist

  • (secx)(tanx)dx=secx+C

Template:Endplainlist

Integrand involving both cosecant and cotangent

Template:Startplainlist

  • (cscx)(cotx)dx=cscx+C

Template:Endplainlist

Integrals in a quarter period

Using the beta function B(a,b) one can write Template:Startplainlist

  • 0π2sinnxdx=0π2cosnxdx=12B(n+12,12)={n1nn3n23412π2,if n is evenn1nn3n24523,if n is odd and more than 11,if n=1

Template:Endplainlist

Using the modified Struve functions Lα(x) and modified Bessel functions Iα(x) one can write Template:Startplainlist

  • 0π2exp(ksin(x))dx=π2(I0(k)+L0(k))

Template:Endplainlist

Integrals with symmetric limits

Template:Startplainlist

  • ccsinxdx=0
  • cccosxdx=20ccosxdx=2c0cosxdx=2sinc
  • cctanxdx=0
  • a2a2x2cos2nπxadx=a3(n2π26)24n2π2(for n=1,3,5...)
  • a2a2x2sin2nπxadx=a3(n2π26(1)n)24n2π2=a324(16(1)nn2π2)(for n=1,2,3,...)

Template:Endplainlist

Integral over a full circle

Template:Startplainlist

  • 02πsin2m+1xcosnxdx=0n,m
  • 02πsinmxcos2n+1xdx=0n,m

Template:Endplainlist

See also

References

Template:Reflist

Template:Lists of integrals