7-orthoplex

From testwiki
Revision as of 20:32, 9 April 2024 by imported>MrKB444
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

Regular 7-orthoplex
(heptacross)

Orthogonal projection
inside Petrie polygon
Type Regular 7-polytope
Family orthoplex
Schläfli symbol {35,4}
{3,3,3,3,31,1}
Coxeter-Dynkin diagrams Template:CDD
Template:CDD
6-faces 128 {35}
5-faces 448 {34}
4-faces 672 {33}
Cells 560 {3,3}
Faces 280 {3}
Edges 84
Vertices 14
Vertex figure 6-orthoplex
Petrie polygon tetradecagon
Coxeter groups C7, [3,3,3,3,3,4]
D7, [34,1,1]
Dual 7-cube
Properties convex, Hanner polytope

In geometry, a 7-orthoplex, or 7-cross polytope, is a regular 7-polytope with 14 vertices, 84 edges, 280 triangle faces, 560 tetrahedron cells, 672 5-cells 4-faces, 448 5-faces, and 128 6-faces.

It has two constructed forms, the first being regular with Schläfli symbol {35,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,3,3,31,1} or Coxeter symbol 411.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 7-hypercube, or hepteract.

Alternate names

  • Heptacross, derived from combining the family name cross polytope with hept for seven (dimensions) in Greek.
  • Hecatonicosoctaexon as a 128-facetted 7-polytope (polyexon).

As a configuration

This configuration matrix represents the 7-orthoplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces and 6-faces. The diagonal numbers say how many of each element occur in the whole 7-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

[1412601602401926428410408080323328082432164645606128510105672446152015644827213535217128]

Images

Template:7-cube Coxeter plane graphs

Construction

There are two Coxeter groups associated with the 7-orthoplex, one regular, dual of the hepteract with the C7 or [4,3,3,3,3,3] symmetry group, and a half symmetry with two copies of 6-simplex facets, alternating, with the D7 or [34,1,1] symmetry group. A lowest symmetry construction is based on a dual of a 7-orthotope, called a 7-fusil.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure
regular 7-orthoplex Template:CDD {3,3,3,3,3,4} [3,3,3,3,3,4] 645120 Template:CDD
Quasiregular 7-orthoplex Template:CDD {3,3,3,3,31,1} [3,3,3,3,31,1] 322560 Template:CDD
7-fusil Template:CDD 7{} [26] 128 Template:CDD

Cartesian coordinates

Cartesian coordinates for the vertices of a 7-orthoplex, centered at the origin are

(±1,0,0,0,0,0,0), (0,±1,0,0,0,0,0), (0,0,±1,0,0,0,0), (0,0,0,±1,0,0,0), (0,0,0,0,±1,0,0), (0,0,0,0,0,±1,0), (0,0,0,0,0,0,±1)

Every vertex pair is connected by an edge, except opposites.

See also

References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380–407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Template:KlitzingPolytopes

Template:Polytopes