Dynkin system

From testwiki
Revision as of 18:26, 10 January 2025 by imported>Malparti (Try to fix the structure of the notes and references)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description A Dynkin system,[1] named after Eugene Dynkin, is a collection of subsets of another universal set Ω satisfying a set of axioms weaker than those of [[Sigma algebra|Template:Sigma-algebra]]. Dynkin systems are sometimes referred to as Template:Lambda-systems (Dynkin himself used this term) or d-system.[2] These set families have applications in measure theory and probability.

A major application of Template:Lambda-systems is the Template:Pi-Template:Lambda theorem, see below.

Definition

Let Ω be a nonempty set, and let D be a collection of subsets of Ω (that is, D is a subset of the power set of Ω). Then D is a Dynkin system if

  1. ΩD;
  2. D is closed under complements of subsets in supersets: if A,BD and AB, then BAD;
  3. D is closed under countable increasing unions: if A1A2A3 is an increasing sequence[note 1] of sets in D then n=1AnD.

It is easy to check[note 2] that any Dynkin system D satisfies:

  1. D;
  2. D is closed under complements in Ω: if AD, then ΩAD;
    • Taking A:=Ω shows that D.
  3. D is closed under countable unions of pairwise disjoint sets: if A1,A2,A3, is a sequence of pairwise disjoint sets in D (meaning that AiAj= for all ij) then n=1AnD.
    • To be clear, this property also holds for finite sequences A1,,An of pairwise disjoint sets (by letting Ai:= for all i>n).

Conversely, it is easy to check that a family of sets that satisfy conditions 4-6 is a Dynkin class.[note 3] For this reason, a small group of authors have adopted conditions 4-6 to define a Dynkin system.

An important fact is that any Dynkin system that is also a [[Pi system|Template:Pi-system]] (that is, closed under finite intersections) is a [[Sigma algebra|Template:Sigma-algebra]]. This can be verified by noting that conditions 2 and 3 together with closure under finite intersections imply closure under finite unions, which in turn implies closure under countable unions.

Given any collection 𝒥 of subsets of Ω, there exists a unique Dynkin system denoted D{𝒥} which is minimal with respect to containing 𝒥. That is, if D~ is any Dynkin system containing 𝒥, then D{𝒥}D~. D{𝒥} is called the Template:Em For instance, D{}={,Ω}. For another example, let Ω={1,2,3,4} and 𝒥={1}; then D{𝒥}={,{1},{2,3,4},Ω}.

Sierpiński–Dynkin's π-λ theoremTemplate:Anchor

Sierpiński-Dynkin's Template:Pi-Template:Lambda theorem:[3] If P is a [[Pi-system|Template:Pi-system]] and D is a Dynkin system with PD, then σ{P}D.

In other words, the Template:Sigma-algebra generated by P is contained in D. Thus a Dynkin system contains a Template:Pi-system if and only if it contains the Template:Sigma-algebra generated by that Template:Pi-system.

One application of Sierpiński-Dynkin's Template:Pi-Template:Lambda theorem is the uniqueness of a measure that evaluates the length of an interval (known as the Lebesgue measure):

Let (Ω,,) be the unit interval [0,1] with the Lebesgue measure on Borel sets. Let m be another measure on Ω satisfying m[(a,b)]=ba, and let D be the family of sets S such that m[S]=[S]. Let I:={(a,b),[a,b),(a,b],[a,b]:0<ab<1}, and observe that I is closed under finite intersections, that ID, and that is the Template:Sigma-algebra generated by I. It may be shown that D satisfies the above conditions for a Dynkin-system. From Sierpiński-Dynkin's Template:Pi-Template:Lambda Theorem it follows that D in fact includes all of , which is equivalent to showing that the Lebesgue measure is unique on .

Application to probability distributions

Template:Transcluded section Pi system

See also

Notes

Template:Reflist

References

Template:Reflist

Further reading

Template:PlanetMath attribution

Template:Measure theory

  1. Dynkin, E., "Foundations of the Theory of Markov Processes", Moscow, 1959
  2. Template:Cite book
  3. Template:Cite web


Cite error: <ref> tags exist for a group named "note", but no corresponding <references group="note"/> tag was found