Del in cylindrical and spherical coordinates: Difference between revisions

From testwiki
Jump to navigation Jump to search
My mistake. Corrected it and left it as it was originially.
 
(No difference)

Latest revision as of 19:09, 23 February 2025

Template:Short description This is a list of some vector calculus formulae for working with common curvilinear coordinate systems.

Notes

  • This article uses the standard notation ISO 80000-2, which supersedes ISO 31-11, for spherical coordinates (other sources may reverse the definitions of θ and φ):
    • The polar angle is denoted by θ[0,π]: it is the angle between the z-axis and the radial vector connecting the origin to the point in question.
    • The azimuthal angle is denoted by φ[0,2π]: it is the angle between the x-axis and the projection of the radial vector onto the xy-plane.
  • The function Template:Nowrap can be used instead of the mathematical function Template:Nowrap owing to its domain and image. The classical arctan function has an image of Template:Nowrap, whereas atan2 is defined to have an image of Template:Nowrap.

Coordinate conversions

Conversion between Cartesian, cylindrical, and spherical coordinates[1]
From
Cartesian Cylindrical Spherical
To Cartesian x=xy=yz=z x=ρcosφy=ρsinφz=z x=rsinθcosφy=rsinθsinφz=rcosθ
Cylindrical ρ=x2+y2φ=arctan(yx)z=z ρ=ρφ=φz=z ρ=rsinθφ=φz=rcosθ
Spherical r=x2+y2+z2θ=arctan(x2+y2z)φ=arctan(yx) r=ρ2+z2θ=arctan(ρz)φ=φ r=rθ=θφ=φ

Note that the operation arctan(AB) must be interpreted as the two-argument inverse tangent, atan2.

Unit vector conversions

Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of destination coordinates[1]
Cartesian Cylindrical Spherical
Cartesian 𝐱^=𝐱^𝐲^=𝐲^𝐳^=𝐳^ 𝐱^=cosφρ^sinφφ^𝐲^=sinφρ^+cosφφ^𝐳^=𝐳^ 𝐱^=sinθcosφ𝐫^+cosθcosφθ^sinφφ^𝐲^=sinθsinφ𝐫^+cosθsinφθ^+cosφφ^𝐳^=cosθ𝐫^sinθθ^
Cylindrical ρ^=x𝐱^+y𝐲^x2+y2φ^=y𝐱^+x𝐲^x2+y2𝐳^=𝐳^ ρ^=ρ^φ^=φ^𝐳^=𝐳^ ρ^=sinθ𝐫^+cosθθ^φ^=φ^𝐳^=cosθ𝐫^sinθθ^
Spherical 𝐫^=x𝐱^+y𝐲^+z𝐳^x2+y2+z2θ^=(x𝐱^+y𝐲^)z(x2+y2)𝐳^x2+y2+z2x2+y2φ^=y𝐱^+x𝐲^x2+y2 𝐫^=ρρ^+z𝐳^ρ2+z2θ^=zρ^ρ𝐳^ρ2+z2φ^=φ^ 𝐫^=𝐫^θ^=θ^φ^=φ^
Conversion between unit vectors in Cartesian, cylindrical, and spherical coordinate systems in terms of source coordinates
Cartesian Cylindrical Spherical
Cartesian 𝐱^=𝐱^𝐲^=𝐲^𝐳^=𝐳^ 𝐱^=xρ^yφ^x2+y2𝐲^=yρ^+xφ^x2+y2𝐳^=𝐳^ 𝐱^=x(x2+y2𝐫^+zθ^)yx2+y2+z2φ^x2+y2x2+y2+z2𝐲^=y(x2+y2𝐫^+zθ^)+xx2+y2+z2φ^x2+y2x2+y2+z2𝐳^=z𝐫^x2+y2θ^x2+y2+z2
Cylindrical ρ^=cosφ𝐱^+sinφ𝐲^φ^=sinφ𝐱^+cosφ𝐲^𝐳^=𝐳^ ρ^=ρ^φ^=φ^𝐳^=𝐳^ ρ^=ρ𝐫^+zθ^ρ2+z2φ^=φ^𝐳^=z𝐫^ρθ^ρ2+z2
Spherical 𝐫^=sinθ(cosφ𝐱^+sinφ𝐲^)+cosθ𝐳^θ^=cosθ(cosφ𝐱^+sinφ𝐲^)sinθ𝐳^φ^=sinφ𝐱^+cosφ𝐲^ 𝐫^=sinθρ^+cosθ𝐳^θ^=cosθρ^sinθ𝐳^φ^=φ^ 𝐫^=𝐫^θ^=θ^φ^=φ^

Del formula

Table with the del operator in cartesian, cylindrical and spherical coordinates
Operation Cartesian coordinates Template:Math Cylindrical coordinates Template:Math Spherical coordinates Template:Math,
where Template:Math is the polar angle and Template:Math is the azimuthal angleTemplate:Ref
Vector field Template:Math Ax𝐱^+Ay𝐲^+Az𝐳^ Aρρ^+Aφφ^+Az𝐳^ Ar𝐫^+Aθθ^+Aφφ^
Gradient Template:Math[1] fx𝐱^+fy𝐲^+fz𝐳^ fρρ^+1ρfφφ^+fz𝐳^ fr𝐫^+1rfθθ^+1rsinθfφφ^
Divergence Template:Math[1] Axx+Ayy+Azz 1ρ(ρAρ)ρ+1ρAφφ+Azz 1r2(r2Ar)r+1rsinθθ(Aθsinθ)+1rsinθAφφ
Curl Template:Math[1] (AzyAyz)𝐱^+(AxzAzx)𝐲^+(AyxAxy)𝐳^ (1ρAzφAφz)ρ^+(AρzAzρ)φ^+1ρ((ρAφ)ρAρφ)𝐳^ 1rsinθ(θ(Aφsinθ)Aθφ)𝐫^+1r(1sinθArφr(rAφ))θ^+1r(r(rAθ)Arθ)φ^
Laplace operator Template:Math[1] 2fx2+2fy2+2fz2 1ρρ(ρfρ)+1ρ22fφ2+2fz2 1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2fφ2
Vector gradient Template:MathTemplate:Ref Axx𝐱^𝐱^+Axy𝐱^𝐲^+Axz𝐱^𝐳^+Ayx𝐲^𝐱^+Ayy𝐲^𝐲^+Ayz𝐲^𝐳^+Azx𝐳^𝐱^+Azy𝐳^𝐲^+Azz𝐳^𝐳^ Aρρρ^ρ^+(1ρAρφAφρ)ρ^φ^+Aρzρ^𝐳^+Aφρφ^ρ^+(1ρAφφ+Aρρ)φ^φ^+Aφzφ^𝐳^+Azρ𝐳^ρ^+1ρAzφ𝐳^φ^+Azz𝐳^𝐳^ Arr𝐫^𝐫^+(1rArθAθr)𝐫^θ^+(1rsinθArφAφr)𝐫^φ^+Aθrθ^𝐫^+(1rAθθ+Arr)θ^θ^+(1rsinθAθφcotθAφr)θ^φ^+Aφrφ^𝐫^+1rAφθφ^θ^+(1rsinθAφφ+cotθAθr+Arr)φ^φ^
Vector Laplacian Template:Math[2] 2Ax𝐱^+2Ay𝐲^+2Az𝐳^

(2AρAρρ22ρ2Aφφ)ρ^+(2AφAφρ2+2ρ2Aρφ)φ^+2Az𝐳^

(2Ar2Arr22r2sinθ(Aθsinθ)θ2r2sinθAφφ)𝐫^+(2AθAθr2sin2θ+2r2Arθ2cosθr2sin2θAφφ)θ^+(2AφAφr2sin2θ+2r2sinθArφ+2cosθr2sin2θAθφ)φ^

Directional derivative Template:Math[3] 𝐀Bx𝐱^+𝐀By𝐲^+𝐀Bz𝐳^ (AρBρρ+AφρBρφ+AzBρzAφBφρ)ρ^+(AρBφρ+AφρBφφ+AzBφz+AφBρρ)φ^+(AρBzρ+AφρBzφ+AzBzz)𝐳^

(ArBrr+AθrBrθ+AφrsinθBrφAθBθ+AφBφr)𝐫^+(ArBθr+AθrBθθ+AφrsinθBθφ+AθBrrAφBφcotθr)θ^+(ArBφr+AθrBφθ+AφrsinθBφφ+AφBrr+AφBθcotθr)φ^

Tensor divergence Template:MathTemplate:Ref

(Txxx+Tyxy+Tzxz)𝐱^+(Txyx+Tyyy+Tzyz)𝐲^+(Txzx+Tyzy+Tzzz)𝐳^

[Tρρρ+1ρTφρφ+Tzρz+1ρ(TρρTφφ)]ρ^+[Tρφρ+1ρTφφφ+Tzφz+1ρ(Tρφ+Tφρ)]φ^+[Tρzρ+1ρTφzφ+Tzzz+Tρzρ]𝐳^

[Trrr+2Trrr+1rTθrθ+cotθrTθr+1rsinθTφrφ1r(Tθθ+Tφφ)]𝐫^+[Trθr+2Trθr+1rTθθθ+cotθrTθθ+1rsinθTφθφ+TθrrcotθrTφφ]θ^+[Trφr+2Trφr+1rTθφθ+1rsinθTφφφ+Tφrr+cotθr(Tθφ+Tφθ)]φ^

Differential displacement Template:Math[1] dx𝐱^+dy𝐲^+dz𝐳^ dρρ^+ρdφφ^+dz𝐳^ dr𝐫^+rdθθ^+rsinθdφφ^
Differential normal area Template:Math dydz𝐱^+dxdz𝐲^+dxdy𝐳^ ρdφdzρ^+dρdzφ^+ρdρdφ𝐳^ r2sinθdθdφ𝐫^+rsinθdrdφθ^+rdrdθφ^
Differential volume Template:Math[1] dxdydz ρdρdφdz r2sinθdrdθdφ
Template:Note This page uses θ for the polar angle and φ for the azimuthal angle, which is common notation in physics. The source that is used for these formulae uses θ for the azimuthal angle and φ for the polar angle, which is common mathematical notation. In order to get the mathematics formulae, switch θ and φ in the formulae shown in the table above.
Template:Note Defined in Cartesian coordinates as i𝐀𝐞i. An alternative definition is 𝐞ii𝐀.
Template:Note Defined in Cartesian coordinates as 𝐞ii𝐓. An alternative definition is i𝐓𝐞i.

Calculation rules

  1. divgradff2f
  2. curlgradf×f=𝟎
  3. divcurl𝐀(×𝐀)=0
  4. curlcurl𝐀×(×𝐀)=(𝐀)2𝐀 (Lagrange's formula for del)
  5. 2(fg)=f2g+2fg+g2f
  6. 2(𝐏𝐐)=𝐐2𝐏𝐏2𝐐+2[(𝐏)𝐐+𝐏××𝐐] (From [4] )

Cartesian derivation

div𝐀=limV0V𝐀d𝐒VdV=Ax(x+dx)dydzAx(x)dydz+Ay(y+dy)dxdzAy(y)dxdz+Az(z+dz)dxdyAz(z)dxdydxdydz=Axx+Ayy+Azz

(curl𝐀)x=limS𝐱^0S𝐀dSdS=Az(y+dy)dzAz(y)dz+Ay(z)dyAy(z+dz)dydydz=AzyAyz

The expressions for (curl𝐀)y and (curl𝐀)z are found in the same way.

Cylindrical derivation

div𝐀=limV0V𝐀d𝐒VdV=Aρ(ρ+dρ)(ρ+dρ)dϕdzAρ(ρ)ρdϕdz+Aϕ(ϕ+dϕ)dρdzAϕ(ϕ)dρdz+Az(z+dz)dρ(ρ+dρ/2)dϕAz(z)dρ(ρ+dρ/2)dϕρdϕdρdz=1ρ(ρAρ)ρ+1ρAϕϕ+Azz

(curl𝐀)ρ=limSρ^0S𝐀dSdS=Aϕ(z)(ρ+dρ)dϕAϕ(z+dz)(ρ+dρ)dϕ+Az(ϕ+dϕ)dzAz(ϕ)dz(ρ+dρ)dϕdz=Aϕz+1ρAzϕ

(curl𝐀)ϕ=limSϕ^0S𝐀dSdS=Az(ρ)dzAz(ρ+dρ)dz+Aρ(z+dz)dρAρ(z)dρdρdz=Azρ+Aρz

(curl𝐀)z=limS𝒛^0S𝐀dSdS=Aρ(ϕ)dρAρ(ϕ+dϕ)dρ+Aϕ(ρ+dρ)(ρ+dρ)dϕAϕ(ρ)ρdϕρdρdϕ=1ρAρϕ+1ρ(ρAϕ)ρ

curl𝐀=(curl𝐀)ρρ^+(curl𝐀)ϕϕ^+(curl𝐀)z𝒛^=(1ρAzϕAϕz)ρ^+(AρzAzρ)ϕ^+1ρ((ρAϕ)ρAρϕ)𝒛^

Spherical derivation

div𝐀=limV0V𝐀d𝐒VdV=Ar(r+dr)(r+dr)dθ(r+dr)sinθdϕAr(r)rdθrsinθdϕ+Aθ(θ+dθ)sin(θ+dθ)rdrdϕAθ(θ)sin(θ)rdrdϕ+Aϕ(ϕ+dϕ)rdrdθAϕ(ϕ)rdrdθdrrdθrsinθdϕ=1r2(r2Ar)r+1rsinθ(Aθsinθ)θ+1rsinθAϕϕ

(curl𝐀)r=limS𝒓^0S𝐀dSdS=Aθ(ϕ)rdθ+Aϕ(θ+dθ)rsin(θ+dθ)dϕAθ(ϕ+dϕ)rdθAϕ(θ)rsin(θ)dϕrdθrsinθdϕ=1rsinθ(Aϕsinθ)θ1rsinθAθϕ

(curl𝐀)θ=limSθ^0S𝐀dSdS=Aϕ(r)rsinθdϕ+Ar(ϕ+dϕ)drAϕ(r+dr)(r+dr)sinθdϕAr(ϕ)drdrrsinθdϕ=1rsinθArϕ1r(rAϕ)r

(curl𝐀)ϕ=limSϕ^0S𝐀dSdS=Ar(θ)dr+Aθ(r+dr)(r+dr)dθAr(θ+dθ)drAθ(r)rdθrdrdθ=1r(rAθ)r1rArθ

curl𝐀=(curl𝐀)r𝒓^+(curl𝐀)θθ^+(curl𝐀)ϕϕ^=1rsinθ((Aϕsinθ)θAθϕ)𝒓^+1r(1sinθArϕ(rAϕ)r)θ^+1r((rAθ)rArθ)ϕ^

Unit vector conversion formula

The unit vector of a coordinate parameter u is defined in such a way that a small positive change in u causes the position vector 𝐫 to change in 𝐮 direction.

Therefore, 𝐫u=su𝐮 where Template:Mvar is the arc length parameter.

For two sets of coordinate systems ui and vj, according to chain rule, d𝐫=i𝐫uidui=isui𝐮^idui=jsvj𝐯^jdvj=jsvj𝐯^jivjuidui=ijsvjvjui𝐯^jdui.

Now, we isolate the ith component. For ik, let duk=0. Then divide on both sides by dui to get: sui𝐮^i=jsvjvjui𝐯^j.

See also

References

Template:Reflist