Agmon's inequality: Difference between revisions
Jump to navigation
Jump to search
imported>Citation bot Alter: location. | Use this bot. Report bugs. | Suggested by Abductive | Category:Mathematical analysis stubs | #UCB_Category 319/373 |
(No difference)
|
Latest revision as of 17:47, 21 June 2023
In mathematical analysis, Agmon's inequalities, named after Shmuel Agmon,[1] consist of two closely related interpolation inequalities between the Lebesgue space and the Sobolev spaces . It is useful in the study of partial differential equations.
Let where Template:Vague. Then Agmon's inequalities in 3D state that there exists a constant such that
and
In 2D, the first inequality still holds, but not the second: let where . Then Agmon's inequality in 2D states that there exists a constant such that
For the -dimensional case, choose and such that . Then, if and , the following inequality holds for any
See also
Notes
- ↑ Lemma 13.2, in: Agmon, Shmuel, Lectures on Elliptic Boundary Value Problems, AMS Chelsea Publishing, Providence, RI, 2010. Template:ISBN.