Quantum register: Difference between revisions

From testwiki
Jump to navigation Jump to search
No edit summary
 
(No difference)

Latest revision as of 12:48, 27 September 2024

Template:Short description In quantum computing, a quantum register is a system comprising multiple qubits.[1] It is the quantum analogue of the classical processor register. Quantum computers perform calculations by manipulating qubits within a quantum register.[2]

Definition

Template:Further It is usually assumed that the register consists of qubits. It is also generally assumed that registers are not density matrices, but that they are pure, although the definition of "register" can be extended to density matrices.

An n size quantum register is a quantum system comprising n pure qubits.

The Hilbert space, , in which the data is stored in a quantum register is given by =𝓃1𝓃20 where is the tensor product.[3]

The number of dimensions of the Hilbert spaces depends on what kind of quantum systems the register is composed of. Qubits are 2-dimensional complex spaces (2), while qutrits are 3-dimensional complex spaces (3), etc. For a register composed of N number of d-dimensional (or d-level) quantum systems we have the Hilbert space =(d)N=dddN timesdN.

The registers quantum state can in the bra-ket notation be written |ψ=k=0dN1ak|k=a0|0+a1|1++adN1|dN1. The values ak are probability amplitudes. Because of the Born rule and the 2nd axiom of probability theory, k=0dN1|ak|2=1, so the possible state space of the register is the surface of the unit sphere in dN.

Examples:

  • The quantum state vector of a 5-qubit register is a unit vector in 25=32.
  • A register of four qutrits similarly is a unit vector in 34=81.

Quantum vs. classical register

First, there's a conceptual difference between the quantum and classical register. An n size classical register refers to an array of n flip flops. An n size quantum register is merely a collection of n qubits.

Moreover, while an n size classical register is able to store a single value of the 2n possibilities spanned by n classical pure bits, a quantum register is able to store all 2n possibilities spanned by quantum pure qubits at the same time.

For example, consider a 2-bit-wide register. A classical register is able to store only one of the possible values represented by 2 bits - 00,01,10,11(0,1,2,3) accordingly.

If we consider 2 pure qubits in superpositions |a0=12(|0+|1) and |a1=12(|0|1), using the quantum register definition |a=|a0|a1=12(|00|01+|10|11) it follows that it is capable of storing all the possible values (by having non-zero probability amplitude for all outcomes) spanned by two qubits simultaneously.

See also

References

Template:Reflist

Further reading