Search results
Jump to navigation
Jump to search
- ...roperties. Those classes can be defined in two distinct ways, using either algebraic notions or topological notions. Varieties of finite [[monoid]]s, varieties === Algebraic definition === ...10 KB (1,598 words) - 23:16, 18 January 2022
- ...function]]s. There is also the '''dual''' [[Schur polynomial#Jacobi−Trudi identities |second Jacobi-Trudi identity]] which expresses [[Schur polynomial|Schur fu ...agram]]. This too is valid for Schubert classes, as are all Schur function identities. For instance, hook partition Schur functions can be expressed bilinearly i ...2 KB (285 words) - 09:22, 14 July 2024
- A straightforward algebraic proof can be attained by simply completely expanding both sides of the equa ...nko Cerin: [https://www.fq.math.ca/Papers1/55-5/Cerin.pdf "ON CANDIDO LIKE IDENTITIES"]. In: ''Fibonacci Quarterly'', Volume 55, No. 5, 2017, pp. 46–51 ...3 KB (431 words) - 05:46, 16 September 2024
- | known_for = Osborn’s rule that deals with Hyperbolic Trigonometric identities ...n’s rule that deals with [[Hyperbolic functions|hyperbolic trigonometric]] identities. ...6 KB (775 words) - 11:32, 3 November 2023
- The identities are used in translating Diophantine problems connected with integral points [[Category:Algebraic identities]] ...2 KB (298 words) - 15:07, 2 February 2024
- ...48}} while studying the second proof Rogers 1917 of the [[Rogers–Ramanujan identities]], and Bailey chains were introduced by {{harvtxt|Andrews|1984}}. ...1=Andrews | first1=George E. | title=Multiple series Rogers-Ramanujan type identities | url=http://projecteuclid.org/euclid.pjm/1102708707 | mr=757501 | year=198 ...4 KB (589 words) - 16:47, 21 May 2022
- ...''hockey-stick identity''',<ref>CH Jones (1996) ''Generalized Hockey Stick Identities and N-Dimensional Block Walking.'' [[Fibonacci Quarterly]] '''34'''(3), 280 ===Inductive and algebraic proofs=== ...7 KB (1,159 words) - 20:29, 21 February 2025
- ...nal space, and the resulting set is still definable in terms of polynomial identities and inequalities. The [[theorem]]—also known as the Tarski–Seidenber ...gorithm is therefore fundamental, and it is widely used in [[computational algebraic geometry]]. ...6 KB (928 words) - 17:02, 19 May 2022
- ...ion was solved in 1980 by [[Alex Wilkie]], who showed that such unprovable identities do exist. ...ntial commutative semiring.</ref> Tarski's problem then becomes: are there identities involving only addition, multiplication, and exponentiation, that are true ...10 KB (1,451 words) - 00:34, 15 October 2024
- ...^2 + 2ab + b^2</math> and <math>\cos^2\theta + \sin^2\theta =1</math> are identities.<ref>{{Cite web |title=Mathwords: Identity |url=https://www.mathwords.com/i ==== Trigonometric identities ==== ...14 KB (2,142 words) - 21:15, 8 December 2024
- ...form]], and the [[Laplacian|Laplacians]] of the Kähler metric. The Kähler identities combine with results of [[Hodge theory]] to produce a number of relations o The Kähler identities were first proven by [[W. V. D. Hodge]], appearing in his book on harmonic ...22 KB (3,655 words) - 05:20, 3 February 2025
- This book is mainly centered around algebraic and combinatorial techniques for designing and using error-correcting [[lin ...ynomial]]s, including the MacWilliams identities, Pless's own power moment identities, and the [[Andrew M. Gleason|Gleason]] polynomials.{{r|blake}} ...7 KB (1,001 words) - 18:31, 17 December 2024
- ...r|year=1980|txt}}, who found that it was related to the [[Rogers–Ramanujan identities]]. ...dubbed the '''hard hexagon entropy constant''' {{harv|Weisstein}}, is an [[algebraic number]] of degree 24 equal to 1.395485972... ({{oeis|A085851}}). ...8 KB (1,250 words) - 04:29, 12 December 2024
- ...Artin groups, combinatorial group theory, monomial algebras, arithmetic of algebraic groups ...c form|quadratic forms]] and their invariants, [[Galois cohomology]] and [[algebraic geometry]].<ref>{{Cite web |title=Uzi Vishne's homepage |url=https://u.math ...7 KB (935 words) - 14:45, 24 February 2025
- [[Category:Algebraic identities]] ...3 KB (419 words) - 15:09, 2 February 2024
- The [[algebraic variety|algebraic varieties]] determined by sparse polynomials have a simple structure, which Other examples include the identities <math>(x - y) \sum_{k=0}^{N-1} x^k y^{N-1-k} = x^N - y^N</math> and also <m ...6 KB (825 words) - 02:48, 4 February 2025
- ...sπr'''<ref name="Renner2005">{{cite book|author=Lex E. Renner|title=Linear Algebraic Monoids|url=https://books.google.com/books?id=VSEce2_LJ20C&pg=PA27|year=200 * Any [[algebraic semigroup]] is an epigroup. ...5 KB (795 words) - 22:25, 10 August 2023
- '''Anne Schilling''' is an American mathematician specializing in [[algebraic combinatorics]], [[representation theory]], and [[mathematical physics]]. S ...h.D. in 1997 at [[Stony Brook University]]. Her dissertation, ''Bose-Fermi Identities and Bailey Flows in Statistical Mechanics and Conformal Field Theory'', was ...4 KB (551 words) - 11:42, 6 April 2024
- ...ler|first3=David|title=Integral transforms and Drinfeld centers in derived algebraic geometry|journal=Journal of the American Mathematical Society| |title=Algebraic K-theory and descent for blow-ups ...5 KB (656 words) - 13:17, 25 January 2025
- ...rrections|location=Providence, Rhode Island|oclc=882503487}}</ref> is an [[algebraic structure]] consisting of a [[set (mathematics)|set]] together with a [[bin * <math>R_{gz}</math> has two left identities: <math>e_1</math> and <math>e_2</math>. Some examples: ...11 KB (1,768 words) - 03:48, 11 November 2023