Overlap–save method

From testwiki
Jump to navigation Jump to search

In signal processing, overlap–save is the traditional name for an efficient way to evaluate the discrete convolution between a very long signal x[n] and a finite impulse response (FIR) filter h[n]:

where Template:Nowrap for m outside the region Template:Nowrap. This article uses common abstract notations, such as y(t)=x(t)*h(t), or y(t)={x(t)}, in which it is understood that the functions should be thought of in their totality, rather than at specific instants t (see Convolution#Notation).

Fig 1: A sequence of four plots depicts one cycle of the overlap–save convolution algorithm. The 1st plot is a long sequence of data to be processed with a lowpass FIR filter. The 2nd plot is one segment of the data to be processed in piecewise fashion. The 3rd plot is the filtered segment, with the usable portion colored red. The 4th plot shows the filtered segment appended to the output stream.Template:Efn-ua The FIR filter is a boxcar lowpass with M=16 samples, the length of the segments is L=100 samples and the overlap is 15 samples.

The concept is to compute short segments of y[n] of an arbitrary length L, and concatenate the segments together. That requires longer input segments that overlap the next input segment. The overlapped data gets "saved" and used a second time.[1] First we describe that process with just conventional convolution for each output segment. Then we describe how to replace that convolution with a more efficient method.

Consider a segment that begins at n = kL + M, for any integer k, and define:

xk[n] {x[n+kL],1nL+M10,otherwise.
yk[n]  xk[n]*h[n]=m=1Mh[m]xk[nm].

Then, for kL+M+1nkL+L+M, and equivalently M+1nkLL+M, we can write:

y[n]=m=1Mh[m]xk[nkLm]    yk[nkL].

With the substitution j=nkL, the task is reduced to computing yk[j] for M+1jL+M. These steps are illustrated in the first 3 traces of Figure 1, except that the desired portion of the output (third trace) corresponds to 1  ≤  Template:Mvar  ≤  L.Template:Efn-ua

If we periodically extend xk[n] with period N  ≥  L + M − 1, according to:

xk,N[n]  =xk[nN],

the convolutions  (xk,N)*h  and  xk*h  are equivalent in the region M+1nL+M. It is therefore sufficient to compute the N-point circular (or cyclic) convolution of xk[n] with h[n]  in the region [1, N].  The subregion [M + 1, L + M] is appended to the output stream, and the other values are discarded.  The advantage is that the circular convolution can be computed more efficiently than linear convolution, according to the circular convolution theorem:

where:

Pseudocode

(Overlap-save algorithm for linear convolution)
h = FIR_impulse_response
M = length(h)
overlap = M − 1
N = 8 × overlap    (see next section for a better choice)
step_size = N − overlap
H = DFT(h, N)
position = 0

while position + N ≤ length(x)
    yt = IDFT(DFT(x(position+(1:N))) × H)
    y(position+(1:step_size)) = yt(M : N)    (discard M−1 y-values)
    position = position + step_size
end

Efficiency considerations

Fig 2: A graph of the values of N (an integer power of 2) that minimize the cost function N(log2N+1)NM+1

When the DFT and IDFT are implemented by the FFT algorithm, the pseudocode above requires about Template:Nowrap complex multiplications for the FFT, product of arrays, and IFFT.Template:Efn-ua Each iteration produces Template:Nowrap output samples, so the number of complex multiplications per output sample is about:

For example, when M=201 and N=1024, Template:EquationNote equals 13.67, whereas direct evaluation of Template:EquationNote would require up to 201 complex multiplications per output sample, the worst case being when both x and h are complex-valued. Also note that for any given M, Template:EquationNote has a minimum with respect to N. Figure 2 is a graph of the values of N that minimize Template:EquationNote for a range of filter lengths (M).

Instead of Template:EquationNote, we can also consider applying Template:EquationNote to a long sequence of length Nx samples. The total number of complex multiplications would be:

Nx(log2(Nx)+1).

Comparatively, the number of complex multiplications required by the pseudocode algorithm is:

Nx(log2(N)+1)NNM+1.

Hence the cost of the overlap–save method scales almost as O(Nxlog2N) while the cost of a single, large circular convolution is almost O(Nxlog2Nx).

Overlap–discard

Overlap–discard[2] and Overlap–scrap[3] are less commonly used labels for the same method described here. However, these labels are actually better (than overlap–save) to distinguish from overlap–add, because both methods "save", but only one discards. "Save" merely refers to the fact that M − 1 input (or output) samples from segment k are needed to process segment k + 1.

Extending overlap–save

The overlap–save algorithm can be extended to include other common operations of a system:Template:Efn-ua[4]

  • additional IFFT channels can be processed more cheaply than the first by reusing the forward FFT
  • sampling rates can be changed by using different sized forward and inverse FFTs
  • frequency translation (mixing) can be accomplished by rearranging frequency bins

See also

Notes

Template:Notelist-ua

References

Template:Reflist Template:Refbegin

  1. Template:Cite book
  2. Template:Cite patent, also available at https://patentimages.storage.googleapis.com/4d/39/2a/cec2ae6f33c1e7/US6898235.pdf

Template:Refend

  1. Cite error: Invalid <ref> tag; no text was provided for refs named OLA
  2. Cite error: Invalid <ref> tag; no text was provided for refs named f.harris
  3. Cite error: Invalid <ref> tag; no text was provided for refs named Frerking
  4. Cite error: Invalid <ref> tag; no text was provided for refs named Borgerding