File:Spectral density of gaussian ensembels, N = 1 to 32.png
From testwiki
Jump to navigation
Jump to search
Size of this preview: 800 × 412 pixels. Other resolutions: 320 × 165 pixels | 640 × 330 pixels | 1,024 × 527 pixels | 1,790 × 922 pixels.
Original file (1,790 × 922 pixels, file size: 267 KB, MIME type: image/png)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionSpectral density of gaussian ensembels, N = 1 to 32.png |
English: Spectral density of gaussian ensembels, N = 1 to 32.
Matplotlib codeimport numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import eigvalsh_tridiagonal # SciPy ≥ 1.15.3
# --------------------------------------------------------------------------
betas = [1, 2, 4] # GOE, GUE, GSE
Ns = [1, 2, 4, 8, 16, 32]
Nmatr = 100_000
window = 5
bins = 400
# --------------------------------------------------------------------------
def concat_batch_eigs(N: int, beta: int, m: int) -> np.ndarray:
size = m * N # total dimension of the big block
# diag
d = np.random.randn(size) * np.sqrt(2.0 / beta) # float64 by default
# off-diag
e = np.zeros(size - 1) # zeros at block cuts
if N > 1:
dfs = beta * np.tile(np.arange(1, N), m) # 1…N‑1 repeated m times
chi = np.random.chisquare(dfs) # same length as e[mask]
e_int = np.sqrt(chi / beta)
mask = np.ones(size - 1, dtype=bool)
mask[np.arange(N - 1, size - 1, N)] = False # False at the cuts
e[mask] = e_int # insert off‑diagonals
# -eigenvalues with QR driver (O(n) memory)
w = eigvalsh_tridiagonal(d, e, lapack_driver='sterf', check_finite=False)
return w / np.sqrt(N) # global scaling
# Simulate
Es = {}
for beta in betas:
for N in Ns:
print(f'β={beta}, N={N} (block dim = {N*Nmatr})')
Es[(N, beta)] = concat_batch_eigs(N, beta, Nmatr)
## plotting
window = 5
bins = 800
leg = {1: 'GOE', 2: 'GUE', 4: 'GSE'}
cols = {1: 'tab:blue', 2: 'tab:red', 4: 'tab:green'}
fig, axs = plt.subplots(2, 3, figsize=(18, 9))
for i, N in enumerate(Ns):
ax = axs[i // 3, i % 3]
for beta in betas:
xs = Es[(N, beta)]
h, edges, _ = ax.hist(xs, bins=bins, density=True,
color=cols[beta], alpha=0.1)
centres = edges[:-1] + np.diff(edges)/2
# simple moving‑average smoother
smoothed = np.convolve(h, np.ones(window)/window, mode='same')
ax.plot(centres, smoothed, color=cols[beta], label=leg[beta])
ax.set_title(f'N = {N}', fontsize=14)
# ax.set_xlabel(r'$\tilde\lambda=\lambda/\sqrt{N}$')
# ax.set_ylabel(r'$\rho_N$')
ax.grid(True)
ax.legend()
fig.suptitle(r'Spectral density of GOE/GUE/GSE with $W_N/\sqrt{N}$',
fontsize=18, y=1.02)
plt.tight_layout()
plt.savefig('Spectral density of gaussian ensembels, N = 1 to 32.png')
plt.show()
|
| Date | |
| Source | Own work |
| Author | Cosmia Nebula |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Captions
Add a one-line explanation of what this file represents
Éléments décrits dans ce fichier
depicts
Valeur sans élément de Wikidata
17 May 2023
image/png
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 01:12, 7 July 2025 | 1,790 × 922 (267 KB) | wikimediacommons>Cosmia Nebula | fx title |
File usage
The following page uses this file: