File:Spectral density of gaussian ensembels, N = 1 to 32.png

From testwiki
Jump to navigation Jump to search
Original file (1,790 × 922 pixels, file size: 267 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: Spectral density of gaussian ensembels, N = 1 to 32.

Matplotlib code

import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import eigvalsh_tridiagonal      # SciPy ≥ 1.15.3

# --------------------------------------------------------------------------
betas  = [1, 2, 4]               # GOE, GUE, GSE
Ns     = [1, 2, 4, 8, 16, 32]
Nmatr  = 100_000
window = 5
bins   = 400
# --------------------------------------------------------------------------

def concat_batch_eigs(N: int, beta: int, m: int) -> np.ndarray:
    size = m * N                       # total dimension of the big block

    # diag
    d = np.random.randn(size) * np.sqrt(2.0 / beta)      # float64 by default

    # off-diag
    e = np.zeros(size - 1)                                # zeros at block cuts
    if N > 1:
        dfs   = beta * np.tile(np.arange(1, N), m)        # 1…N‑1 repeated m times
        chi   = np.random.chisquare(dfs)                  # same length as e[mask]
        e_int = np.sqrt(chi / beta)

        mask = np.ones(size - 1, dtype=bool)
        mask[np.arange(N - 1, size - 1, N)] = False       # False at the cuts
        e[mask] = e_int                                   # insert off‑diagonals

    # -eigenvalues with QR driver (O(n) memory)
    w = eigvalsh_tridiagonal(d, e, lapack_driver='sterf', check_finite=False)
    return w / np.sqrt(N)                                 # global scaling

# Simulate
Es = {}
for beta in betas:
    for N in Ns:
        print(f'β={beta},  N={N}   (block dim = {N*Nmatr})')
        Es[(N, beta)] = concat_batch_eigs(N, beta, Nmatr)
## plotting
window  = 5
bins = 800

leg  = {1: 'GOE', 2: 'GUE', 4: 'GSE'}
cols = {1: 'tab:blue', 2: 'tab:red', 4: 'tab:green'}

fig, axs = plt.subplots(2, 3, figsize=(18, 9))
for i, N in enumerate(Ns):
    ax = axs[i // 3, i % 3]
    for beta in betas:
        xs  = Es[(N, beta)]
        h, edges, _ = ax.hist(xs, bins=bins, density=True,
                              color=cols[beta], alpha=0.1)
        centres = edges[:-1] + np.diff(edges)/2
        # simple moving‑average smoother
        smoothed = np.convolve(h, np.ones(window)/window, mode='same')
        ax.plot(centres, smoothed, color=cols[beta], label=leg[beta])

    ax.set_title(f'N = {N}', fontsize=14)
    # ax.set_xlabel(r'$\tilde\lambda=\lambda/\sqrt{N}$')
    # ax.set_ylabel(r'$\rho_N$')
    ax.grid(True)
    ax.legend()

fig.suptitle(r'Spectral density of GOE/GUE/GSE with $W_N/\sqrt{N}$',
             fontsize=18, y=1.02)
plt.tight_layout()
plt.savefig('Spectral density of gaussian ensembels, N = 1 to 32.png')
plt.show()

Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Éléments décrits dans ce fichier

depicts

17 May 2023

image/png

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current01:12, 7 July 2025Thumbnail for version as of 01:12, 7 July 20251,790 × 922 (267 KB)wikimediacommons>Cosmia Nebulafx title

The following page uses this file: