File:Spectral density of Wishart-Laguerre ensemble (8, 15).png
From testwiki
Jump to navigation
Jump to search
Size of this preview: 800 × 437 pixels. Other resolutions: 320 × 175 pixels | 640 × 350 pixels | 1,325 × 724 pixels.
Original file (1,325 × 724 pixels, file size: 86 KB, MIME type: image/png)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionSpectral density of Wishart-Laguerre ensemble (8, 15).png |
English: A reconstruction of Figure 1 of Moments of Wishart-Laguerre and Jacobi ensembles of random matrices (Livan 2011)
https://arxiv.org/pdf/1103.2638.pdf ```python import numpy as np import matplotlib.pyplot as plt
betas = 1, 2, 4 NMs = [(8, 15)]
Nmatr = 100000 Es = {} for n, m in NMs: for beta in betas:
if beta == 1: # Wishart Orthogonal Ensemble
X = np.random.randn(Nmatr, n, m)
M = np.einsum('ijk,ilk->ijl', X, X)
E = np.linalg.eigvals(M.reshape(Nmatr, n, n)).flatten()
elif beta == 2: # Wishart Unitary Ensemble
X_real = np.random.randn(Nmatr, n, m)
X_imag = np.random.randn(Nmatr, n, m)
X = X_real + 1j * X_imag
M = np.einsum('ijk,ilk->ijl', X, X.conjugate())
E = np.linalg.eigvals(M.reshape(Nmatr, n, n)).flatten()
elif beta == 4: # Wishart Symplectic Ensemble
A = np.random.randn(Nmatr, n,m) + 1j * np.random.randn(Nmatr, n,m)
B = np.random.randn(Nmatr, n,m) + 1j * np.random.randn(Nmatr, n,m)
X = np.block([[A, B],[-np.conj(B), np.conj(A)]])
M = np.einsum('ijk,ilk->ijl', X, X.conjugate())
E = np.linalg.eigvals(M.reshape(Nmatr, 2 * n, 2 * n)).flatten()
Es[(n, m, beta)] = E
for n, m in NMs: plt.figure(figsize=(16, 8)) legends = {1: "LOE", 2:"LUE", 4:"LSE"}
colors={1:"blue", 2:"red", 4:"green"}
for beta in betas:
color=colors[beta]
E = Es[(n, m, beta)]
xs = np.real(E) / np.sqrt(beta)
bin_heights, bin_borders, _ = plt.hist(xs, bins=500, density=True, color=color, alpha=0.1)
bin_centers = bin_borders[:-1] + np.diff(bin_borders) / 2
# Compute sliding window average
window_size = 5
window = np.ones(window_size) / window_size
smoothed_heights = np.convolve(bin_heights, window, mode='same')
# Plot sliding window average
plt.plot(bin_centers, smoothed_heights, label=legends[beta], color=color)
# Add plot labels and title
plt.xlabel('x', fontsize=14)
plt.ylabel('ρ(x)', fontsize=14)
plt.title(r'Eigenvalues $/\sqrtTemplate:\beta$, with (N, M) = {}'.format((n, m)), fontsize=18)
plt.grid(True)
plt.legend()
plt.show()
``` |
| Date | |
| Source | Own work |
| Author | Cosmia Nebula |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
depicts
some value
17 May 2023
image/png
88,381 byte
724 pixel
1,325 pixel
f51c829896633d2670bc2911271830a88f48ba84
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 11:50, 17 May 2023 | 1,325 × 724 (86 KB) | wikimediacommons>Cosmia Nebula | Uploaded while editing "Wishart distribution" on en.wikipedia.org |
File usage
The following page uses this file: