File:SG RLS LMS chan inv.png
From testwiki
Jump to navigation
Jump to search
SG_RLS_LMS_chan_inv.png (561 × 420 pixels, file size: 15 KB, MIME type: image/png)
This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.
Summary
| DescriptionSG RLS LMS chan inv.png |
English: Developed according to TU Ilmenau teaching materials.
MatLab/Octave source code: clear all; close all; clc
%% Initialization
% channel parameters
sigmaS = 1; %signal power
sigmaN = 0.01; %noise power
% CSI (channel state information):
channel = [0.722-1j*0.779; -0.257-1j*0.722; -0.789-1j*1.862];
M = 5; % filter order
% step sizes
mu_LMS = [0.01,0.07];
mu_SG = [0.01,0.07];
NS = 1000; %number of symbols
NEnsembles = 1000; %number of ensembles
%% Compute Rxx and p
%the maximum index of channel taps (l=0,1...L):
L = length(channel) - 1;
H = convmtx(channel, M-L); %channel matrix (Toeplitz structure)
Rnn = sigmaN*eye(M); %the noise covariance matrix
%the received signal covariance matrix:
Rxx = sigmaS*(H*H')+sigmaN*eye(M);
%the cross-correlation vector
%between the tap-input vector and the desired response:
p = sigmaS*H(:,1);
% An inline function to calculate MSE(w) for a weight vector w
calc_MSE = @(w) real(w'*Rxx*w - w'*p - p'*w + sigmaS);
%% Adaptive Equalization
N_test = 2;
MSE_LMS = zeros(NEnsembles, NS, N_test);
MSE_SG = zeros(NEnsembles, NS, N_test);
MSE_RLS = zeros(NEnsembles, NS, N_test);
for nEnsemble = 1:NEnsembles
%initial symbols:
symbols = sigmaS*sign(randn(1,NS));
%received noisy symbols:
X = H*hankel(symbols(1:M-L),[symbols(M-L:end),zeros(1,M-L-1)]) + ...
sqrt(sigmaN)*(randn(M,NS)+1j*randn(M,NS))/sqrt(2);
for n_mu = 1:N_test
w_LMS = zeros(M,1);
w_SG = zeros(M,1);
p_SG = zeros(M,1);
R_SG = zeros(M);
for n = 1:NS
%% LMS - Least Mean Square
e = symbols(n) - w_LMS'*X(:,n);
w_LMS = w_LMS + mu_LMS(n_mu)*X(:,n)*conj(e);
MSE_LMS(nEnsemble,n,n_mu)= calc_MSE(w_LMS);
%% SG - Stochastic gradient
R_SG = 1/n*((n-1)*R_SG + X(:,n)*X(:,n)');
p_SG = 1/n*((n-1)*p_SG + X(:,n)*conj(symbols(n)));
w_SG = w_SG + mu_SG(n_mu)*(p_SG - R_SG*w_SG);
MSE_SG(nEnsemble,n,n_mu)= calc_MSE(w_SG);
end
end
%RLS - Recursive Least Squares
lambda_RLS = [0.8; 1]; %forgetting factors
for n_lambda=1:length(lambda_RLS)
%Initialize the weight vectors for RLS
delta = 1;
w_RLS = zeros(M,1);
P = eye(M)/delta; % (n-1)-th iteration, where n = 1,2...
PI = zeros(M,1); % n-th iteration
K = zeros(M,1);
for n=1:NS
% the recursive process of RLS
PI = P*X(:,n);
K = PI/(lambda_RLS(n_lambda)+X(:,n)'*PI);
ee = symbols(n) - w_RLS'*X(:,n);
w_RLS = w_RLS + K*conj(ee);
MSE_RLS(nEnsemble,n,n_lambda)= calc_MSE(w_RLS);
P = P/lambda_RLS(n_lambda) - K/lambda_RLS(n_lambda)*X(:,n)'*P;
end
end
end
MSE_LMS_1 = mean(MSE_LMS(:,:,1));
MSE_LMS_2 = mean(MSE_LMS(:,:,2));
MSE_SG_1 = mean(MSE_SG(:,:,1));
MSE_SG_2 = mean(MSE_SG(:,:,2));
MSE_RLS_1 = mean(MSE_RLS(:,:,1));
MSE_RLS_2 = mean(MSE_RLS(:,:,2));
n = 1:NS;
m = [1 3 6 10 30 60 100 300 600 1000];
figure(1)
loglog(m, MSE_LMS_1(m),'x','linewidth',2, 'color','blue');
hold all;
loglog(m, MSE_LMS_2(m),'o','linewidth',2, 'color','blue');
loglog(m, MSE_SG_1(m),'x','linewidth',2, 'color','red');
loglog(m, MSE_SG_2(m),'o','linewidth',2, 'color','red');
loglog(m, MSE_RLS_1(m),'x','linewidth',2, 'color','green');
loglog(m, MSE_RLS_2(m),'o','linewidth',2, 'color','green');
wopt = Rxx\p;
MSEopt = calc_MSE(wopt);
loglog(n, MSE_LMS_1(n),'linewidth',2, 'color','blue');
loglog(n, MSE_LMS_2(n),'linewidth',2, 'color','blue');
loglog(n, MSE_SG_1(n),'linewidth',2, 'color','red');
loglog(n, MSE_SG_2(n),'linewidth',2, 'color','red');
loglog(n, MSE_RLS_1(n),'linewidth',2, 'color','green');
loglog(n, MSE_RLS_2(n),'linewidth',2, 'color','green');
loglog(n, MSEopt*ones(size(n)), 'color','black','linewidth',2);
grid on
xlabel('Ns');
ylabel('Mean-Squares Error');
title('LMS, SG, RLS')
legend(['LMS, \mu=' num2str(mu_LMS(1))],['LMS, \mu=' num2str(mu_LMS(2))],...
['SG, \mu=' num2str(mu_SG(1))],['SG, \mu=' num2str(mu_SG(2))],...
['RLS, \lambda=' num2str(lambda_RLS(1))],['RLS, \lambda=' num2str(lambda_RLS(2))],...
'Wiener solution')
|
| Date | |
| Source | Own work |
| Author | Kirlf |
Licensing
I, the copyright holder of this work, hereby publish it under the following license:
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Captions
The mean square error perofrmance of Least mean squares filter, Stochastic gradient descent and Recursive least squares filter in dependance of training symbols.
Items portrayed in this file
depicts
2 March 2019
image/png
15,712 byte
420 pixel
561 pixel
fc1c365e868186d49a6a3e97c9050822e6a828ea
File history
Click on a date/time to view the file as it appeared at that time.
| Date/Time | Thumbnail | Dimensions | User | Comment | |
|---|---|---|---|---|---|
| current | 19:42, 15 July 2019 | 561 × 420 (15 KB) | wikimediacommons>Kirlf | Noise power was wrong in signal modeling. |
File usage
The following page uses this file:
