File:Hopf and homoclinic bifurcation 2.gif

From testwiki
Jump to navigation Jump to search
Original file (1,600 × 1,600 pixels, file size: 53.45 MB, MIME type: image/gif, 240 frames, 9.6 s)
Note: Due to technical limitations, thumbnails of high resolution GIF images such as this one will not be animated.

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English:

Matplotlib code

from tqdm import tqdm
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
import os

escape_size = 2.0 # If a trajectory is this distance away from 0, we assume it has escaped and stop simulating it.
for i, mu in enumerate(tqdm(np.linspace(-0.18, 0.15, 240))):
  if i < 129:
    continue
  def system(t, y):
      v, w = y
      dv = mu * v + w - v**2
      dw = -v + mu * w + 2 * v**2
      dv *= (np.abs(v) < 2.0) * (np.abs(w) < 2.0)
      dw *= (np.abs(v) < 2.0) * (np.abs(w) < 2.0)
      return [dv, dw]
  def system_reversed(t, y):
      v, w = y
      dv = mu * v + w - v**2
      dw = -v + mu * w + 2 * v**2
      dv *= (np.abs(v) < 2.0) * (np.abs(w) < 2.0)
      dw *= (np.abs(v) < 2.0) * (np.abs(w) < 2.0)
      return [-dv, -dw]

  x_root = (mu**2+1)/(2+mu)
  y_root = -mu * x_root + x_root ** 2
  vmin, vmax, wmin, wmax = -1,1,-1,1
  # vmin,vmax,wmin,wmax= x_root-0.0005,x_root+0.0005, y_root-0.0005, y_root+0.0005

  t_span = np.array([0, 20])
  trajectory_resolution = 10

  epsilon = 0.01
  
  initial_conditions = [(x, y)  for x in np.linspace(vmin, vmax, trajectory_resolution) for y in np.linspace(wmin, wmax, trajectory_resolution)]
  initial_conditions += [(0 + dx, 0 + dy) for dx in np.linspace(-0.02, 0.02, 3) for dy in np.linspace(-0.02, 0.02, 3)]
  initial_conditions_2 = [(x_root + dx, y_root + dy) for dx in np.linspace(-epsilon, epsilon, 10) for dy in np.linspace(-epsilon, epsilon, 10)]
  sols = {}
  sols_2 = {}
  sols_reversed = {}
  sols_reversed_2 = {}
  for ic in initial_conditions:
      sols[ic] = solve_ivp(system, t_span, ic, dense_output=True, max_step=0.05)
      sols_reversed[ic] = solve_ivp(system_reversed, t_span, ic, dense_output=True, max_step=0.05)
  for ic in initial_conditions_2:
      sols_2[ic] = solve_ivp(system, 2*t_span, ic, dense_output=True, max_step=0.05)
      sols_reversed_2[ic] = solve_ivp(system_reversed, 2*t_span, ic, dense_output=True, max_step=0.05)

  vs = np.linspace(vmin, vmax, 200)
  v_axis = np.linspace(vmin, vmax, 20)
  w_axis = np.linspace(wmin, wmax, 20)

  v_values, w_values = np.meshgrid(v_axis, w_axis)

  dv, dw = system(0, [v_values, w_values])

  fig, ax = plt.subplots(figsize=(16,16))
  # ax.scatter(x_root, y_root)
  # integral curves
  for ic in initial_conditions:
    sol = sols[ic]
    ax.plot(sol.y[0], sol.y[1],alpha=0.4, linewidth=0.5, color='k')
    sol = sols_reversed[ic]
    ax.plot(sol.y[0], sol.y[1], alpha=0.4, linewidth=0.5, color='k')
  for ic in initial_conditions_2:
    sol = sols_2[ic]
    ax.plot(sol.y[0], sol.y[1],alpha=0.8, linewidth=0.5, color='r')
    sol = sols_reversed_2[ic]
    ax.plot(sol.y[0], sol.y[1], alpha=0.8, linewidth=0.5, color='b')

  # vector fields
  arrow_lengths = np.sqrt(dv**2 + dw**2)
  alpha_values = 1 - (arrow_lengths / np.max(arrow_lengths))**0.4
  ax.quiver(v_values, w_values, dv, dw, color='blue', linewidth=0.5, scale=25, alpha=alpha_values)

  # nullclines
  ax.plot(vs, vs**2-mu*vs,  color="green", alpha=0.2, label="x nullcline")
  if np.abs(mu) < 0.001:
    ax.axvline(0, wmin, wmax, color="red", alpha=0.2, label="y nullcline")
    ax.axvline(1/2, wmin, wmax, color="red", alpha=0.2, label="y nullcline")
  else:  
    ax.plot(vs, (vs-2*vs**2)/mu, color="red", alpha=0.2, label="y nullcline")

  ax.set_title(f'Hopf Bifurcation Model
$\mu={mu:.3f}}})

  # ax.legend()
  ax.set_xlim(vmin, vmax)
  ax.set_ylim(wmin, wmax)
  ax.set_xticks([])
  ax.set_yticks([])
  dir_path = f"./hopf_2"
  if not os.path.exists(dir_path):
    os.makedirs(dir_path)

  fig.savefig(f"{dir_path}/{i}.png")
  plt.close()
import imageio.v3 as iio
from natsort import natsorted
import moviepy.editor as mp

for dir_path in ["./hopf_2"]:
    file_names = natsorted((fn for fn in os.listdir(dir_path) if fn.endswith('.png')))

    # Create a list of image files and set the frame rate
    images = []
    fps = 24

    # Iterate over the file names and append the images to the list
    for file_name in file_names:
        file_path = os.path.join(dir_path, file_name)
        images.append(iio.imread(file_path))

    filename = dir_path[2:]
    iio.imwrite(f"{filename}.gif", images, duration=1000/fps, rewind=True)
    clip = mp.ImageSequenceClip(images, fps=fps)
    clip.write_videofile(f"{filename}.mp4")

Date
Source Own work
Author Cosmia Nebula

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 4.0 International license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

image/gif

56,050,766 byte

1,600 pixel

1,600 pixel

bfcfd53abda99b973de09c4b236a6cc65abf5b47

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current20:08, 26 April 2023Thumbnail for version as of 20:08, 26 April 20231,600 × 1,600 (53.45 MB)wikimediacommons>Cosmia NebulaUploaded while editing "Bifurcation theory" on en.wikipedia.org

The following 2 pages use this file: