File:Double torus illustration.png

From testwiki
Jump to navigation Jump to search
Original file (985 × 1,077 pixels, file size: 260 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: Illustration of en:Double torus
Date (UTC)
Source Own work
Author Oleg Alexandrov
Other versions
File:Bitorus.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.

File:Double torus illustration.png → File:Bitorus.svg

For more information, see Help:SVG.

In other languages
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
New SVG image

PNG development
InfoField
 This diagram was created with MATLAB.

Licensing

Public domain I, the copyright holder of this work, release this work into the public domain. This applies worldwide.
In some countries this may not be legally possible; if so:
I grant anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.


Source code

% illustration of a double torus, obtained as an isosurface
function main()

   % big and small radii of the torus
   R = 3; r = 1; 

   % c controls the transition from one ring to the other
   c = 1.3*pi/2;
   
   Kb = R+r;
  
   h = 0.1; % h is the grid size. Smaller h means prettier picture.
   
   X = (-Kb-h):h:(3*Kb+h); m = length(X);
   Y = (-Kb-h):h:(Kb+h);   n = length(Y);
   Z = (-r-h):h:(r+h);     k = length(Z);
 
   W = zeros(m, n, k); % the zero level set of this function will be the desired shape
 
   for i=1:m
      for j=1:n
         x = X(i); x = my_map(x, Kb, c);   % map from two torii to one torus
         y = Y(j); 
         W(i, j, :) = (sqrt(x^2+y^2)-R)^2 + Z.^2-r^2; % torus eqn, vectorize in Z
      end
   end

   figure(4); clf; hold on; axis equal; axis off;

   H = patch(isosurface(W, 0));
   isonormals(W, H);
      
   light_green=[184, 224, 98]/256;

   % set some propeties
   set(H, 'FaceColor', light_green, 'EdgeColor','none', 'FaceAlpha', 1);
   set(H, 'SpecularColorReflectance', 0.1, 'DiffuseStrength', 0.8);
   set(H, 'FaceLighting', 'phong', 'AmbientStrength', 0.3);
   set(H, 'SpecularExponent', 108);

   daspect([1 1 1]);
   axis tight;
   colormap(prism(28))
      
% viewing angle
   view(-165, 42);

% add in a source of light
   camlight (-50, 54); lighting phong;

% save as png
  print('-dpng', '-r500', sprintf('Double_torus_illustration.png'));
   
% This function constructs the second ring in the double torus
% by mapping from the first one.
function y=my_map(x, K, c)

   if x > K
      x = 2*K - x;
   end
   
   if x < K-c
      y = x;
   else
      y = (K-c) + sin((x - (K-c))*(pi/2/c));
   end

Captions

Illustration of a double torus

Items portrayed in this file

depicts

6 September 2007

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current05:32, 12 July 2008Thumbnail for version as of 05:32, 12 July 2008985 × 1,077 (260 KB)wikimediacommons>Oleg AlexandrovHigher quality version, using isosurface instead of patches. Same license and all that.