File:Amoeba3.png

From testwiki
Jump to navigation Jump to search
Original file (1,267 × 1,006 pixels, file size: 12 KB, MIME type: image/png)

This file is from Wikimedia Commons and may be used by other projects. The description on its file description page there is shown below.

Summary

Description
English: The amoeba of
Date
Source Own work
Author Oleg Alexandrov
Other versions
File:Amoeba3.svg is a vector version of this file. It should be used in place of this PNG file when not inferior.

File:Amoeba3.png → File:Amoeba3.svg

For more information, see Help:SVG.

In other languages
Alemannisch  العربية  беларуская (тарашкевіца)  български  বাংলা  català  нохчийн  čeština  dansk  Deutsch  Ελληνικά  English  British English  Esperanto  español  eesti  euskara  فارسی  suomi  français  Frysk  galego  Alemannisch  עברית  हिन्दी  hrvatski  magyar  հայերեն  Bahasa Indonesia  Ido  italiano  日本語  ქართული  한국어  lietuvių  македонски  മലയാളം  Bahasa Melayu  မြန်မာဘာသာ  norsk bokmål  Plattdüütsch  Nederlands  norsk nynorsk  norsk  occitan  polski  prūsiskan  português  português do Brasil  română  русский  sicilianu  Scots  slovenčina  slovenščina  српски / srpski  svenska  தமிழ்  ไทย  Türkçe  татарча / tatarça  українська  vèneto  Tiếng Việt  中文  中文(中国大陆)  中文(简体)  中文(繁體)  中文(马来西亚)  中文(新加坡)  中文(臺灣)  +/−
New SVG image

Licensing

Public domain This work has been released into the public domain by its author, Oleg Alexandrov. This applies worldwide.
In some countries this may not be legally possible; if so:
Oleg Alexandrov grants anyone the right to use this work for any purpose, without any conditions, unless such conditions are required by law.

Source code

The logo of MATLAB – numerical computing environment
The logo of MATLAB – numerical computing environment
This media was created with MATLAB (numerical computing environment)
Here is a listing of the source used to create this file.

Deutsch  English  +/−

% find the amoeba of a polynomial, see
% http://en.wikipedia.org/wiki/Amoeba_%28mathematics%29

% consider a polynomial in z and w
%f[z_, w_] = 1 + z + z^2 + z^3 + z^2*w^3 + 10*z*w + 12*z^2*w + 10*z^2*w^2

% as a polynomial in w with coeffs polynonials in z, its coeffs are 
% [z^2, 10*z^2, 12*z^2+10*z, 1 + z + z^2 + z^3] (from largest to smallest)

% as a polynomial in z with coeffs polynonials in w, its coeffs are 
% [1, 1+w^3+12*w+10*w^2, 1+10*w, 1] (from largest to smallest)

function main()

   figure(3); clf; hold on;
   axis([-10, 10, -6, 7]); axis equal; axis off;
   fs = 20; set(gca, 'fontsize', fs);
   
   ii=sqrt(-1);
   tiny = 100*eps;
   
   Ntheta = 300;
   NR=      400; NRs=100; % NRs << NR  

   % LogR is a vector of numbers, not uniformly distributed (more points where needed).
   A=-10; B=10; AA = -0.1; BB = 0.1; 
   LogR  = [linspace(A, B, NR-NRs), linspace(AA, BB, NRs)]; LogR = sort (LogR);
   R     = exp(LogR);

   % a vector of angles
   Theta = linspace(0, 2*pi, Ntheta);

   Rho = zeros(1, 3*Ntheta); % will store the absolute values of the roots
   One = ones (1, 3*Ntheta);

   % draw the 2D figure as union of horizontal pieces and then union of vertical pieces
   for type=1:2

	  for count_r = 1:NR
		 count_r
		 
		 r = R(count_r);
		 for count_t =1:Ntheta
			
			theta = Theta (count_t);

			if type == 1
			   z=r*exp(ii*theta);
			   Coeffs = [z^2, 10*z^2, 12*z^2+10*z, 1 + z + z^2 + z^3];
			else
			   w=r*exp(ii*theta);
			   Coeffs = [1, 1+w^3+12*w+10*w^2, 1+10*w, 1];
			end

			% find the roots of the polynomial with given coefficients
			Roots = roots(Coeffs);

                        % log |root|. Use max() to avoid log 0.
			Rho((3*count_t-2):(3*count_t))= log (max(abs(Roots), tiny)); 
		 end
		 

		 % plot the roots horizontally or vertically
		 if type == 1
			plot(LogR(count_r)*One, Rho, 'b.');
		 else
			plot(Rho, LogR(count_r)*One, 'b.');
		 end
		 
	  end

   end
   
   saveas(gcf, 'amoeba3.eps', 'psc2');

% A function I decided not to use, but which may be helpful in the future.   
%function find_gaps_add_to_curves(count_r, Rho)
%
%   global Curves;
%   
%   Rho = sort (Rho);
%   k = length (Rho);
%
%   av_gap = sum(Rho(2:k) - Rho (1:(k-1)))/(k-1);
%
%   % top-most and bottom-most curve
%   Curves(1, count_r)=Rho(1); Curves(2, count_r)=Rho(k);
%
%   % find the gaps, which will give us points on the curves limiting the amoeba
%   count = 3;
%   for j=1:(k-1)
%	  if Rho(j+1) - Rho (j) > 200*av_gap
%
%		 Curves(count, count_r) = Rho(j);   count = count+1;
%		 Curves(count, count_r) = Rho(j+1); count = count+1;
%	  end
%   end

% The polynomial in wiki notation
%<math>P(z_1, z_2)=1 + z_1\,</math>
%<math>+ z_1^2 + z_1^3 + z_1^2z_2^3\,</math>
%<math>+ 10z_1z_2 + 12z_1^2z_2\,</math>
%<math>+ 10z_1^2z_2^2.\,</math>

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

2 March 2007

image/png

bcbbd985122ea85c5b131921b3b73b0f80332b80

12,078 byte

1,006 pixel

1,267 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current16:45, 2 March 2007Thumbnail for version as of 16:45, 2 March 20071,267 × 1,006 (12 KB)wikimediacommons>Oleg AlexandrovMade by myself with Matlab.

There are no pages that use this file.