Pairing

From testwiki
Revision as of 12:57, 31 January 2025 by imported>Quevenski (Added correct hypothesis to my statement about when perfect pairings are easy)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:About Template:Distinguish

In mathematics, a pairing is an R-bilinear map from the Cartesian product of two R-modules, where the underlying ring R is commutative.

Definition

Let R be a commutative ring with unit, and let M, N and L be R-modules.

A pairing is any R-bilinear map e:M×NL. That is, it satisfies

e(rm,n)=e(m,rn)=re(m,n),
e(m1+m2,n)=e(m1,n)+e(m2,n) and e(m,n1+n2)=e(m,n1)+e(m,n2)

for any rR and any m,m1,m2M and any n,n1,n2N. Equivalently, a pairing is an R-linear map

MRNL

where MRN denotes the tensor product of M and N.

A pairing can also be considered as an R-linear map Φ:MHomR(N,L), which matches the first definition by setting Φ(m)(n):=e(m,n).

A pairing is called perfect if the above map Φ is an isomorphism of R-modules and the other evaluation map Φ:NHomR(M,L) is an isomorphism also. In nice cases, it suffices that just one of these be an isomorphism, e.g. when R is a field, M,N are finite dimensional vector spaces and L=R.

A pairing is called non-degenerate on the right if for the above map we have that e(m,n)=0 for all m implies n=0; similarly, e is called non-degenerate on the left if e(m,n)=0 for all n implies m=0.

A pairing is called alternating if N=M and e(m,m)=0 for all m. In particular, this implies e(m+n,m+n)=0, while bilinearity shows e(m+n,m+n)=e(m,m)+e(m,n)+e(n,m)+e(n,n)=e(m,n)+e(n,m). Thus, for an alternating pairing, e(m,n)=e(n,m).

Examples

Any scalar product on a real vector space V is a pairing (set Template:Nowrap, Template:Nowrap in the above definitions).

The determinant map (2 × 2 matrices over k) → k can be seen as a pairing k2×k2k.

The Hopf map S3S2 written as h:S2×S2S2 is an example of a pairing. For instance, Hardie et al.[1] present an explicit construction of the map using poset models.

Pairings in cryptography

Template:Main In cryptography, often the following specialized definition is used:[2]

Let G1,G2 be additive groups and GT a multiplicative group, all of prime order p. Let PG1,QG2 be generators of G1 and G2 respectively.

A pairing is a map: e:G1×G2GT

for which the following holds:

  1. Bilinearity: a,b: e(aP,bQ)=e(P,Q)ab
  2. Non-degeneracy: e(P,Q)1
  3. For practical purposes, e has to be computable in an efficient manner

Note that it is also common in cryptographic literature for all groups to be written in multiplicative notation.

In cases when G1=G2=G, the pairing is called symmetric. As G is cyclic, the map e will be commutative; that is, for any P,QG, we have e(P,Q)=e(Q,P). This is because for a generator gG, there exist integers p, q such that P=gp and Q=gq. Therefore e(P,Q)=e(gp,gq)=e(g,g)pq=e(gq,gp)=e(Q,P).

The Weil pairing is an important concept in elliptic curve cryptography; e.g., it may be used to attack certain elliptic curves (see MOV attack). It and other pairings have been used to develop identity-based encryption schemes.

Slightly different usages of the notion of pairing

Scalar products on complex vector spaces are sometimes called pairings, although they are not bilinear. For example, in representation theory, one has a scalar product on the characters of complex representations of a finite group which is frequently called character pairing.

See also

References

  1. Hardie K.A.1; Vermeulen J.J.C.; Witbooi P.J., A nontrivial pairing of finite T0 spaces, Topology and its Applications, Volume 125, Number 3, 20 November 2002 , pp. 533–542.
  2. Dan Boneh, Matthew K. Franklin, Identity-Based Encryption from the Weil Pairing, SIAM J. of Computing, Vol. 32, No. 3, pp. 586–615, 2003.

Template:Use dmy dates