Bishop–Gromov inequality

From testwiki
Revision as of 22:05, 8 December 2021 by 2003:eb:8f16:2500:40d3:87d1:9f12:2c8d (talk) (Reference was edited, because section was false)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In mathematics, the Bishop–Gromov inequality is a comparison theorem in Riemannian geometry, named after Richard L. Bishop and Mikhail Gromov. It is closely related to Myers' theorem, and is the key point in the proof of Gromov's compactness theorem.[1]

Statement

Let M be a complete n-dimensional Riemannian manifold whose Ricci curvature satisfies the lower bound

Ric(n1)K

for a constant K. Let MKn be the complete n-dimensional simply connected space of constant sectional curvature K (and hence of constant Ricci curvature (n1)K); thus MKn is the n-sphere of radius 1/K if K>0, or n-dimensional Euclidean space if K=0, or an appropriately rescaled version of n-dimensional hyperbolic space if K<0. Denote by B(p,r) the ball of radius r around a point p, defined with respect to the Riemannian distance function.

Then, for any pM and pKMKn, the function

ϕ(r)=VolB(p,r)VolB(pK,r)

is non-increasing on (0,).

As r goes to zero, the ratio approaches one, so together with the monotonicity this implies that

VolB(p,r)VolB(pK,r).

This is the version first proved by Bishop.[2][3]

See also

References

Template:Reflist

  1. Template:Cite book
  2. Bishop, R. A relation between volume, mean curvature, and diameter. Template:Free access Notices of the American Mathematical Society 10 (1963), p. 364.
  3. Bishop R.L., Crittenden R.J. Geometry of manifolds, Corollary 4, p. 256