Motzkin number
Template:Short description Template:Infobox integer sequence In mathematics, the Template:Mvarth Motzkin number is the number of different ways of drawing non-intersecting chords between Template:Mvar points on a circle (not necessarily touching every point by a chord). The Motzkin numbers are named after Theodore Motzkin and have diverse applications in geometry, combinatorics and number theory.
The Motzkin numbers for form the sequence:
Examples
The following figure shows the 9 ways to draw non-intersecting chords between 4 points on a circle (Template:Math):
The following figure shows the 21 ways to draw non-intersecting chords between 5 points on a circle (Template:Math):
Properties
The Motzkin numbers satisfy the recurrence relations
The Motzkin numbers can be expressed in terms of binomial coefficients and Catalan numbers:
and inversely,[1]
This gives
The generating function of the Motzkin numbers satisfies
and is explicitly expressed as
An integral representation of Motzkin numbers is given by
- .
They have the asymptotic behaviour
- .
A Motzkin prime is a Motzkin number that is prime. Four such primes are known:
- 2, 127, 15511, 953467954114363 Template:OEIS
Combinatorial interpretations
The Motzkin number for Template:Mvar is also the number of positive integer sequences of length Template:Math in which the opening and ending elements are either 1 or 2, and the difference between any two consecutive elements is −1, 0 or 1. Equivalently, the Motzkin number for Template:Mvar is the number of positive integer sequences of length Template:Math in which the opening and ending elements are 1, and the difference between any two consecutive elements is −1, 0 or 1.
Also, the Motzkin number for Template:Mvar gives the number of routes on the upper right quadrant of a grid from coordinate (0, 0) to coordinate (Template:Mvar, 0) in Template:Mvar steps if one is allowed to move only to the right (up, down or straight) at each step but forbidden from dipping below the Template:Mvar = 0 axis.
For example, the following figure shows the 9 valid Motzkin paths from (0, 0) to (4, 0):
There are at least fourteen different manifestations of Motzkin numbers in different branches of mathematics, as enumerated by Template:Harvtxt in their survey of Motzkin numbers. Template:Harvtxt showed that vexillary involutions are enumerated by Motzkin numbers.
See also
- Telephone number which represent the number of ways of drawing chords if intersections are allowed
- Delannoy number
- Narayana number
- Schröder number