Timeline of scientific discoveries

From testwiki
Revision as of 06:33, 22 February 2025 by 103.252.200.98 (talk)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:See also

Template:More citations needed Template:Use dmy dates of possible major scientific breakthroughs, theories and discoveries, along with the discoverer. This mere speculas discovery, although imperfect reasoned arguments, argbased on elegasimplicity, and numerically/experimentally verified conjectures qualify (as otherwise no scientific discovery before the late 19th century would count). The timeline begins at the Bronze Age, as it is difficult to give even estimates for the timing of events prior to this, such as of the discovery of counting, natural numbers and arithmetic.

To avoid overlap with timeline of historic inventions, the timeline does not list examples of documentation for manufactured substances and devices unless they reveal a more fundamental leap in the theoretical ideas in a field.

Bronze Age

Many early innovations of the Bronze Age were prompted by the increase in trade, and this also applies to the scientific advances of this period. For context, the major civilizations of this period are Egypt, Mesopotamia, and the Indus Valley, with Greece rising in importance towards the end of the third millennium BC. The Indus Valley script remains undeciphered and there are very little surviving fragments of its writing, thus any inference about scientific discoveries in that region must be made based only on archaeological digs. The following dates are approximations.

The Nippur cubit-rod, c. 2650 BCE, in the Archeological Museum of Istanbul, Turkey
  • 3000 BC: Units of measurement are developed in the Americas as well as the major Bronze Age civilizations: Egypt, Mesopotamia, Elam and the Indus Valley.[1][2]
  • 3000 BC: The first deciphered numeral system is that of the Egyptian numerals, a sign-value system (as opposed to a place-value system).[3]
  • 2650 BC: The oldest extant record of a unit of length, the cubit-rod ruler, is from Nippur.
  • 2600 BC: The oldest attested evidence for the existence of units of weight, and weighing scales date to the Fourth Dynasty of Egypt, with Deben (unit) balance weights, excavated from the reign of Sneferu, though earlier usage has been proposed.[4]
  • 2100 BC: The concept of area is first recognized in Babylonian clay tablets,[5] and 3-dimensional volume is discussed in an Egyptian papyrus. This begins the study of geometry.
  • 2100 BC: Quadratic equations, in the form of problems relating the areas and sides of rectangles, are solved by Babylonians.[5]
  • 2000 BC: Pythagorean triples are first discussed in Babylon and Egypt, and appear on later manuscripts such as the Berlin Papyrus 6619.[6]
  • 2000 BC: Multiplication tables in a base-60, rather than base-10 (decimal), system from Babylon.[7]
  • 2000 BC: Primitive positional notation for numerals is seen in the Babylonian cuneiform numerals.[8] However, the lack of clarity around the notion of zero made their system highly ambiguous (e.g. Template:Val would be written the same as Template:Val).[9]
  • Early 2nd millennium BC: Similar triangles and side-ratios are studied in Egypt for the construction of pyramids, paving the way for the field of trigonometry.[10]
  • Early 2nd millennium BC: Ancient Egyptians study anatomy, as recorded in the Edwin Smith Papyrus. They identified the heart and its vessels, liver, spleen, kidneys, hypothalamus, uterus, and bladder, and correctly identified that blood vessels emanated from the heart (however, they also believed that tears, urine, and semen, but not saliva and sweat, originated in the heart, see Cardiocentric hypothesis).[11]
  • 1800 BC: The Middle Kingdom of Egypt develops Egyptian fraction notation.
  • 1800 BC - 1600 BC: A numerical approximation for the square root of two, accurate to 6 decimal places, is recorded on YBC 7289, a Babylonian clay tablet believed to belong to a student.[12]
  • 1800 BC - 1600 BC: A Babylonian tablet uses Template:Frac = 3.125 as an approximation for Template:Pi, which has an error of 0.5%.[13][14][15]
  • 1550 BC: The Rhind Mathematical Papyrus (a copy of an older Middle Kingdom text) contains the first documented instance of inscribing a polygon (in this case, an octagon) into a circle to estimate the value of Template:Pi.[16][17]

Iron Age

The following dates are approximations.

500 BC – 1 BC

The following dates are approximations.

  • 500 BC: Hippasus, a Pythagorean, discovers irrational numbers.[27][28]
  • 500 BC: Anaxagoras identifies moonlight as reflected sunlight.[29]
  • 5th century BC: The Greeks start experimenting with straightedge-and-compass constructions.[30]
  • 5th century BC: The earliest documented mention of a spherical Earth comes from the Greeks in the 5th century BC.[31] It is known that the Indians modeled the Earth as spherical by 300 BC[32]
  • 460 BC: Empedocles describes thermal expansion.[33]
  • Late 5th century BC: Antiphon discovers the method of exhaustion, foreshadowing the concept of a limit.
  • 4th century BC: Greek philosophers study the properties of logical negation.
  • 4th century BC: The first true formal system is constructed by Pāṇini in his Sanskrit grammar.[34][35]
  • 4th century BC: Eudoxus of Cnidus states the Archimedean property.[36]
  • 4th century BC: Thaetetus shows that square roots are either integer or irrational.
  • 4th century BC: Thaetetus enumerates the Platonic solids, an early work in graph theory.
  • 4th century BC: Menaechmus discovers conic sections.[37]
  • 4th century BC: Menaechmus develops co-ordinate geometry.[38]
  • 4th century BC: Mozi in China gives a description of the camera obscura phenomenon.
  • 4th century BC: Around the time of Aristotle, a more empirically founded system of anatomy is established, based on animal dissection. In particular, Praxagoras makes the distinction between arteries and veins.
  • 4th century BC: Aristotle differentiates between near-sighted and far-sightedness.[39] Graeco-Roman physician Galen would later use the term "myopia" for near-sightedness.
    Pāṇini's Aṣṭādhyāyī, an early Indian grammatical treatise that constructs a formal system for the purpose of describing Sanskrit grammar.
  • 4th century BC: Pāṇini develops a full-fledged formal grammar (for Sanskrit).
  • Late 4th century BC: Chanakya (also known as Kautilya) establishes the field of economics with the Arthashastra (literally "Science of wealth"), a prescriptive treatise on economics and statecraft for Mauryan India.[40]
  • 4th - 3rd century BC: In Mauryan India, The Jain mathematical text Surya Prajnapati draws a distinction between countable and uncountable infinities.[41]
  • 350 BC - 50 BC: Clay tablets from (possibly Hellenistic-era) Babylon describe the mean speed theorem.[42]
  • 300 BC: Greek mathematician Euclid in the Elements describes a primitive form of formal proof and axiomatic systems. However, modern mathematicians generally believe that his axioms were highly incomplete, and that his definitions were not really used in his proofs.
  • 300 BC: Finite geometric progressions are studied by Euclid in Ptolemaic Egypt.[43]
  • 300 BC: Euclid proves the infinitude of primes.[44]
  • 300 BC: Euclid proves the Fundamental Theorem of Arithmetic.
  • 300 BC: Euclid discovers the Euclidean algorithm.
  • 300 BC: Euclid publishes the Elements, a compendium on classical Euclidean geometry, including: elementary theorems on circles, definitions of the centers of a triangle, the tangent-secant theorem, the law of sines and the law of cosines.[45]
  • 300 BC: Euclid's Optics introduces the field of geometric optics, making basic considerations on the sizes of images.
  • 3rd century BC: Archimedes relates problems in geometric series to those in arithmetic series, foreshadowing the logarithm.[46]
  • 3rd century BC: Pingala in Mauryan India studies binary numbers, making him the first to study the radix (numerical base) in history.[47]
  • 3rd century BC: Pingala in Mauryan India describes the Fibonacci sequence.[48][49]
  • 3rd century BC: Pingala in Mauryan India discovers the binomial coefficients in a combinatorial context and the additive formula for generating them (nr)=(n1r)+(n1r1),[50][51] i.e. a prose description of Pascal's triangle, and derived formulae relating to the sums and alternating sums of binomial coefficients. It has been suggested that he may have also discovered the binomial theorem in this context.[52]
  • 3rd century BC: Eratosthenes discovers the Sieve of Eratosthenes.[53]
  • 3rd century BC: Archimedes derives a formula for the volume of a sphere in The Method of Mechanical Theorems.[54]
  • 3rd century BC: Archimedes calculates areas and volumes relating to conic sections, such as the area bounded between a parabola and a chord, and various volumes of revolution.[55]
  • 3rd century BC: Archimedes discovers the sum/difference identity for trigonometric functions in the form of the "Theorem of Broken Chords".[45]
  • 3rd century BC: Archimedes makes use of infinitesimals.[56]
  • 3rd century BC: Archimedes further develops the method of exhaustion into an early description of integration.[57][58]
  • 3rd century BC: Archimedes calculates tangents to non-trigonometric curves.[59]
  • 3rd century BC: Archimedes uses the method of exhaustion to construct a strict inequality bounding the value of Template:Pi within an interval of 0.002.
  • 3rd century BC: Archimedes develops the field of statics, introducing notions such as the center of gravity, mechanical equilibrium, the study of levers, and hydrostatics.
  • 3rd century BC: Eratosthenes measures the circumference of the Earth.[60]
  • 260 BC: Aristarchus of Samos proposes a basic heliocentric model of the universe.[61]
  • 200 BC: Apollonius of Perga discovers Apollonius's theorem.
  • 200 BC: Apollonius of Perga assigns equations to curves.
  • 200 BC: Apollonius of Perga develops epicycles. While an incorrect model, it was a precursor to the development of Fourier series.
  • 2nd century BC: Hipparchos discovers the apsidal precession of the Moon's orbit.[62]
  • 2nd century BC: Hipparchos discovers Axial precession.
  • 2nd century BC: Hipparchos measures the sizes of and distances to the Moon and Sun.[63]
  • 190 BC: Magic squares appear in China. The theory of magic squares can be considered the first example of a vector space.
  • 165 BC - 142 BC: Zhang Cang in Northern China is credited with the development of Gaussian elimination.[64]

1 AD – 500 AD

Mathematics and astronomy flourish during the Golden Age of India (4th to 6th centuries AD) under the Gupta Empire. Meanwhile, Greece and its colonies have entered the Roman period in the last few decades of the preceding millennium, and Greek science is negatively impacted by the Fall of the Western Roman Empire and the economic decline that follows.

  • 1st to 4th century: A precursor to long division, known as "galley division" is developed at some point. Its discovery is generally believed to have originated in India around the 4th century AD,[65] although Singaporean mathematician Lam Lay Yong claims that the method is found in the Chinese text The Nine Chapters on the Mathematical Art, from the 1st century AD.[66]
  • 60 AD: Heron's formula is discovered by Hero of Alexandria.[67]
  • 2nd century: Ptolemy formalises the epicycles of Apollonius.
  • 2nd century: Ptolemy publishes his Optics, discussing colour, reflection, and refraction of light, and including the first known table of refractive angles.
  • 2nd century: Galen studies the anatomy of pigs.[68]
  • 100: Menelaus of Alexandria describes spherical triangles, a precursor to non-Euclidean geometry.[69]
  • 150: The Almagest of Ptolemy contains evidence of the Hellenistic zero. Unlike the earlier Babylonian zero, the Hellenistic zero could be used alone, or at the end of a number. However, it was usually used in the fractional part of a numeral, and was not regarded as a true arithmetical number itself.
  • 150: Ptolemy's Almagest contains practical formulae to calculate latitudes and day lengths.
    Diophantus' Arithmetica (pictured: a Latin translation from 1621) contained the first known use of symbolic mathematical notation. Despite the relative decline in the importance of the sciences during the Roman era, several Greek mathematicians continued to flourish in Alexandria.
  • 3rd century: Diophantus discusses linear diophantine equations.
  • 3rd century: Diophantus uses a primitive form of algebraic symbolism, which is quickly forgotten.[70]
  • 210: Negative numbers are accepted as numeric by the late Han-era Chinese text The Nine Chapters on the Mathematical Art.[71] Later, Liu Hui of Cao Wei (during the Three Kingdoms period) writes down laws regarding the arithmetic of negative numbers.[72]
  • By the 4th century: A square root finding algorithm with quartic convergence, known as the Bakhshali method (after the Bakhshali manuscript which records it), is discovered in India.[73]
  • By the 4th century: The present Hindu–Arabic numeral system with place-value numerals develops in Gupta-era India, and is attested in the Bakhshali Manuscript of GandharaTemplate:Broken anchor.[74] The superiority of the system over existing place-value and sign-value systems arises from its treatment of zero as an ordinary numeral.
  • 4th to 5th centuries: The modern fundamental trigonometric functions, sine and cosine, are described in the Siddhantas of India.Template:Sfn This formulation of trigonometry is an improvement over the earlier Greek functions, in that it lends itself more seamlessly to polar co-ordinates and the later complex interpretation of the trigonometric functions.
  • By the 5th century: The decimal separator is developed in India,[75] as recorded in al-Uqlidisi's later commentary on Indian mathematics.[76]
  • By the 5th century: The elliptical orbits of planets are discovered in India by at least the time of Aryabhata, and are used for the calculations of orbital periods and eclipse timings.[77]
  • By 499: Aryabhata's work shows the use of the modern fraction notation, known as bhinnarasi.[78]
    Fragment of papyrus with clear Greek script, lower-right corner suggests a tiny zero with a double-headed arrow shape above it
    Example of the early Greek symbol for zero (lower right corner) from a 2nd-century papyrus
  • 499: Aryabhata gives a new symbol for zero and uses it for the decimal system.
  • 499: Aryabhata discovers the formula for the square-pyramidal numbers (the sums of consecutive square numbers).[79]
  • 499: Aryabhata discovers the formula for the simplicial numbers (the sums of consecutive cube numbers).[79]
  • 499: Aryabhata discovers Bezout's identity, a foundational result to the theory of principal ideal domains.[80]
  • 499: Aryabhata develops Kuṭṭaka, an algorithm very similar to the Extended Euclidean algorithm.[80]
  • 499: Aryabhata describes a numerical algorithm for finding cube roots.[81][82]
  • 499: Aryabhata develops an algorithm to solve the Chinese remainder theorem.[83]
  • 499: Historians speculate that Aryabhata may have used an underlying heliocentric model for his astronomical calculations, which would make it the first computational heliocentric model in history (as opposed to Aristarchus's model in form).[84][85][86] This claim is based on his description of the planetary period about the Sun (śīghrocca), but has been met with criticism.[87]
  • 499: Aryabhata creates a particularly accurate eclipse chart. As an example of its accuracy, 18th century scientist Guillaume Le Gentil, during a visit to Pondicherry, India, found the Indian computations (based on Aryabhata's computational paradigm) of the duration of the lunar eclipse of 30 August 1765 to be short by 41 seconds, whereas his charts (by Tobias Mayer, 1752) were long by 68 seconds.[88]

500 AD – 1000 AD

The age of Imperial Karnataka was a period of significant advancement in Indian mathematics.

The Golden Age of Indian mathematics and astronomy continues after the end of the Gupta empire, especially in Southern India during the era of the Rashtrakuta, Western Chalukya and Vijayanagara empires of Karnataka, which variously patronised Hindu and Jain mathematicians. In addition, the Middle East enters the Islamic Golden Age through contact with other civilisations, and China enters a golden period during the Tang and Song dynasties.

1000 AD – 1500 AD

  • 11th century: Alhazen discovers the formula for the simplicial numbers defined as the sums of consecutive quartic powers.Template:Citation needed
  • 11th century: Alhazen systematically studies optics and refraction, which would later be important in making the connection between geometric (ray) optics and wave theory.
  • 11th century: Shen Kuo discovers atmospheric refraction and provides the correct explanation of rainbow phenomenonTemplate:Citation needed
  • 11th century: Shen Kuo discovers the concepts of true north and magnetic declination.
  • 11th century: Shen Kuo develops the field of geomorphology and natural climate change.
  • 1000: Al-Karaji uses mathematical induction.[103]
  • 1058: al-Zarqālī in Islamic Spain discovers the apsidal precession of the Sun.
  • 12th century: Bhāskara II develops the Chakravala method, solving Pell's equation.[104]
  • 12th century: Al-Tusi develops a numerical algorithm to solve cubic equations.
  • 12th century: Jewish polymath Baruch ben Malka in Iraq formulates a qualitative form of Newton's second law for constant forces.[105][106]
  • 1220s: Robert Grosseteste writes on optics, and the production of lenses, while asserting models should be developed from observations, and predictions of those models verified through observation, in a precursor to the scientific method.[107]
  • 1267: Roger Bacon publishes his Opus Majus, compiling translated Classical Greek, and Arabic works on mathematics, optics, and alchemy into a volume, and details his methods for evaluating the theories, particularly those of Ptolemy's 2nd century Optics, and his findings on the production of lenses, asserting “theories supplied by reason should be verified by sensory data, aided by instruments, and corroborated by trustworthy witnesses", in a precursor to the peer reviewed scientific method.
  • 1290: Eyeglasses are invented in Northern Italy,[108] possibly Pisa, demonstrating knowledge of human biology and optics, to offer bespoke works that compensate for an individual human disability.
  • 1295: Scottish priest Duns Scotus writes about the mutual beneficence of trade.[109]
  • 14th century: French priest Jean Buridan provides a basic explanation of the price system.
  • 1380: Madhava of Sangamagrama develops the Taylor series, and derives the Taylor series representation for the sine, cosine and arctangent functions, and uses it to produce the [[Leibniz formula for π|Leibniz series for Template:Pi]].[110]
  • 1380: Madhava of Sangamagrama discusses error terms in infinite series in the context of his infinite series for Template:Pi.[111]
  • 1380: Madhava of Sangamagrama discovers continued fractions and uses them to solve transcendental equations.[112]
  • 1380: The Kerala school develops convergence tests for infinite series.[110]
  • 1380: Madhava of Sangamagrama solves transcendental equations by iteration.[112]
  • 1380: Madhava of Sangamagrama discovers the most precise estimate of Template:Pi in the medieval world through his infinite series, a strict inequality with uncertainty 3e-13.
  • 15th century: Parameshvara discovers a formula for the circumradius of a quadrilateral.[113]
  • 1480: Madhava of Sangamagrama found pi and that it was infinite.
  • 1500: Nilakantha Somayaji discovers an infinite series for Template:Pi.[114]Template:Rp[115]
  • 1500: Nilakantha Somayaji develops a model similar to the Tychonic system. His model has been described as mathematically more efficient than the Tychonic system due to correctly considering the equation of the centre and latitudinal motion of Mercury and Venus.[96][116]

16th century

The Scientific Revolution occurs in Europe around this period, greatly accelerating the progress of science and contributing to the rationalization of the natural sciences.

17th century

18th century

1800–1849

1850–1899

1900–1949

1950–1999

21st century

Template:See also

Template:Further

References

Template:Reflist

Template:History of science Template:Portal bar

  1. Template:Cite encyclopedia
  2. Template:Cite book
  3. Template:Cite web
  4. Template:Citation
  5. 5.0 5.1 Template:Cite journal
  6. Richard J. Gillings, Mathematics in the Time of the Pharaohs, Dover, New York, 1982, 161.
  7. Template:Cite journal
  8. Template:Cite book
  9. Template:Citation
  10. Template:Cite book
  11. Template:Cite book
  12. Template:Citation
  13. Template:Cite book
  14. Template:Cite web
  15. Template:Cite book
  16. Template:Cite book
  17. Template:Cite book
  18. Template:Cite journal
  19. Template:Cite book
  20. Template:Cite book
  21. Template:Cite journal
  22. Template:Cite web
  23. Template:Cite journal
  24. Template:Cite web
  25. 25.0 25.1 Template:Cite book Alt URL
  26. Template:Cite journal
  27. Template:Cite journal
  28. Template:Cite journal.
  29. Template:Cite magazine
  30. Bold, Benjamin. Famous Problems of Geometry and How to Solve Them, Dover Publications, 1982 (orig. 1969).
  31. Template:Cite book
  32. Template:Cite book
  33. Template:Cite book
  34. Bhate, S. and Kak, S. (1993) Panini and Computer Science. Annals of the Bhandarkar Oriental Research Institute, vol. 72, pp. 79-94.
  35. Template:Citation
  36. Template:Cite book
  37. Template:Harvnb. "It was consequently a signal achievement on the part of Menaechmus when he disclosed that curves having the desired property were near at hand. In fact, there was a family of appropriate curves obtained from a single source – the cutting of a right circular cone by a plane perpendicular to an element of the cone. That is, Menaechmus is reputed to have discovered the curves that were later known as the ellipse, the parabola, and the hyperbola. [...] Yet the first discovery of the ellipse seems to have been made by Menaechmus as a mere by-product in a search in which it was the parabola and hyperbola that proffered the properties needed in the solution of the Delian problem."
  38. Template:Harvnb. "Menaechmus apparently derived these properties of the conic sections and others as well. Since this material has a strong resemblance to the use of coordinates, as illustrated above, it has sometimes been maintained that Menaechmus had analytic geometry. Such a judgment is warranted only in part, for certainly Menaechmus was unaware that any equation in two unknown quantities determines a curve. In fact, the general concept of an equation in unknown quantities was alien to Greek thought. It was shortcomings in algebraic notations that, more than anything else, operated against the Greek achievement of a full-fledged coordinate geometry."
  39. Template:Cite book
  40. Template:Cite journal
  41. Template:Cite book
  42. Template:Cite journal
  43. Template:Cite book
  44. Template:Citation
  45. 45.0 45.1 Template:Harvnb. "Trigonometry, like other branches of mathematics, was not the work of any one man, or nation. Theorems on ratios of the sides of similar triangles had been known to, and used by, the ancient Egyptians and Babylonians. In view of the pre-Hellenic lack of the concept of angle measure, such a study might better be called "trilaterometry", or the measure of three sided polygons (trilaterals), than "trigonometry", the measure of parts of a triangle. With the Greeks we first find a systematic study of relationships between angles (or arcs) in a circle and the lengths of chords subtending these. Properties of chords, as measures of central and inscribed angles in circles, were familiar to the Greeks of Hippocrates' day, and it is likely that Eudoxus had used ratios and angle measures in determining the size of the earth and the relative distances of the sun and the moon. In the works of Euclid there is no trigonometry in the strict sense of the word, but there are theorems equivalent to specific trigonometric laws or formulas. Propositions II.12 and 13 of the Elements, for example, are the laws of cosines for obtuse and acute angles respectively, stated in geometric rather than trigonometric language and proved by a method similar to that used by Euclid in connection with the Pythagorean theorem. Theorems on the lengths of chords are essentially applications of the modern law of sines. We have seen that Archimedes' theorem on the broken chord can readily be translated into trigonometric language analogous to formulas for sines of sums and differences of angles."
  46. Ian Bruce (2000) "Napier’s Logarithms", American Journal of Physics 68(2):148
  47. Template:Cite journal
  48. Template:Citation
  49. Template:Citation
  50. A. W. F. Edwards. Pascal's arithmetical triangle: the story of a mathematical idea. JHU Press, 2002. Pages 30–31.
  51. 51.0 51.1 51.2 Template:Citation
  52. Template:Cite journal
  53. Template:Citation
  54. Template:Citation
  55. Template:Citation
  56. Archimedes, The Method of Mechanical Theorems; see Archimedes Palimpsest
  57. Template:Cite web
  58. Template:Cite journal
  59. Template:Harvnb. "Greek mathematics sometimes has been described as essentially static, with little regard for the notion of variability; but Archimedes, in his study of the spiral, seems to have found the tangent to a curve through kinematic considerations akin to differential calculus. Thinking of a point on the spiral 1=r = as subjected to a double motion — a uniform radial motion away from the origin of coordinates and a circular motion about the origin — he seems to have found (through the parallelogram of velocities) the direction of motion (hence of the tangent to the curve) by noting the resultant of the two component motions. This appears to be the first instance in which a tangent was found to a curve other than a circle.
    Archimedes' study of the spiral, a curve that he ascribed to his friend Conon of Alexandria, was part of the Greek search for the solution of the three famous problems."
  60. D. Rawlins: "Methods for Measuring the Earth's Size by Determining the Curvature of the Sea" and "Racking the Stade for Eratosthenes", appendices to "The Eratosthenes–Strabo Nile Map. Is It the Earliest Surviving Instance of Spherical Cartography? Did It Supply the 5000 Stades Arc for Eratosthenes' Experiment?", Archive for History of Exact Sciences, v.26, 211–219, 1982
  61. Template:Cite book
  62. Template:Cite journal
  63. Bowen A.C., Goldstein B.R. (1991). "Hipparchus' Treatment of Early Greek Astronomy: The Case of Eudoxus and the Length of Daytime Author(s)". Proceedings of the American Philosophical Society 135(2): 233–254.
  64. Needham, Joseph (1986). Science and Civilization in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth (Vol. 3), p 24. Taipei: Caves Books, Ltd.
  65. Template:Cite book
  66. Template:Cite journal
  67. Template:Cite book
  68. Template:Cite journal
  69. Template:Harvnb. "In Book I of this treatise Menelaus establishes a basis for spherical triangles analogous to that of Euclid I for plane triangles. Included is a theorem without Euclidean analogue – that two spherical triangles are congruent if corresponding angles are equal (Menelaus did not distinguish between congruent and symmetric spherical triangles); and the theorem A + B + C > 180° is established. The second book of the Sphaerica describes the application of spherical geometry to astronomical phenomena and is of little mathematical interest. Book III, the last, contains the well known "theorem of Menelaus" as part of what is essentially spherical trigonometry in the typical Greek form – a geometry or trigonometry of chords in a circle. In the circle in Fig. 10.4 we should write that chord AB is twice the sine of half the central angle AOB (multiplied by the radius of the circle). Menelaus and his Greek successors instead referred to AB simply as the chord corresponding to the arc AB. If BOB' is a diameter of the circle, then chord A' is twice the cosine of half the angle AOB (multiplied by the radius of the circle)."
  70. Kurt Vogel, "Diophantus of Alexandria." in Complete Dictionary of Scientific Biography, Encyclopedia.com, 2008. Quote: The symbolism that Diophantus introduced for the first time, and undoubtedly devised himself, provided a short and readily comprehensible means of expressing an equation... Since an abbreviation is also employed for the word ‘equals’, Diophantus took a fundamental step from verbal algebra towards symbolic algebra.
  71. * Struik, Dirk J. (1987). A Concise History of Mathematics. New York: Dover Publications. pp. 32–33. "In these matrices we find negative numbers, which appear here for the first time in history."
  72. Template:Cite book
  73. Template:Cite news
  74. Template:Cite web
  75. Reimer, L., and Reimer, W. Mathematicians Are People, Too: Stories from the Lives of Great Mathematicians, Vol. 2. 1995. pp. 22-22. Parsippany, NJ: Pearson Education, Inc. as Dale Seymor Publications. Template:ISBN.
  76. Template:Cite book
  77. Hayashi (2008), Aryabhata I.Template:Full citation needed
  78. Template:Cite web
  79. 79.0 79.1 Template:Harvnb. "He gave more elegant rules for the sum of the squares and cubes of an initial segment of the positive integers. The sixth part of the product of three quantities consisting of the number of terms, the number of terms plus one, and twice the number of terms plus one is the sum of the squares. The square of the sum of the series is the sum of the cubes."
  80. 80.0 80.1 Template:Cite book
  81. Template:Britannica
  82. Template:Cite arXiv
  83. Template:Citation
  84. The concept of Indian heliocentrism has been advocated by B. L. van der Waerden, Das heliozentrische System in der griechischen, persischen und indischen Astronomie. Naturforschenden Gesellschaft in Zürich. Zürich:Kommissionsverlag Leeman AG, 1970.
  85. B.L. van der Waerden, "The Heliocentric System in Greek, Persian and Hindu Astronomy", in David A. King and George Saliba, ed., From Deferent to Equant: A Volume of Studies in the History of Science in the Ancient and Medieval Near East in Honor of E. S. Kennedy, Annals of the New York Academy of Science, 500 (1987), pp. 529–534.
  86. Template:Cite book
  87. Noel Swerdlow, "Review: A Lost Monument of Indian Astronomy," Isis, 64 (1973): 239–243.
  88. Template:Cite journal
  89. 89.0 89.1 Template:Cite book
  90. Morris R. Cohen and I. E. Drabkin (eds. 1958), A Source Book in Greek Science (p. 220), with several changes. Cambridge, MA: Harvard University Press, as referenced by David C. Lindberg (1992), The Beginnings of Western Science: The European Scientific Tradition in Philosophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450, University of Chicago Press, p. 305, Template:ISBN
  91. Henry Thomas Colebrooke. Algebra, with Arithmetic and Mensuration, from the Sanscrit of Brahmegupta and Bháscara, London 1817, p. 339 (online)
  92. Template:Citation
  93. Template:Citation
  94. Template:Citation
  95. Template:Citation
  96. 96.0 96.1 Template:Citation
  97. Bina Chatterjee (introduction by), The Khandakhadyaka of Brahmagupta, Motilal Banarsidass (1970), p. 13
  98. Lallanji Gopal, History of Agriculture in India, Up to C. 1200 A.D., Concept Publishing Company (2008), p. 603
  99. Kosla Vepa, Astronomical Dating of Events & Select Vignettes from Indian History, Indic Studies Foundation (2008), p. 372
  100. Dwijendra Narayan Jha (edited by), The feudal order: state, society, and ideology in early medieval India, Manohar Publishers & Distributors (2000), p. 276
  101. http://spie.org/etop/2007/etop07fundamentalsII.pdf," R. Rashed credited Ibn Sahl with discovering the law of refraction [23], usually called Snell’s law and also Snell and Descartes’ law."
  102. Template:Cite book
  103. Template:Cite book
  104. Florian Cajori (1918), Origin of the Name "Mathematical Induction", The American Mathematical Monthly 25 (5), p. 197-201.
  105. Crombie, Alistair Cameron, Augustine to Galileo 2, p. 67.
  106. Template:Cite encyclopedia
    (cf. Abel B. Franco (October 2003). "Avempace, Projectile Motion, and Impetus Theory", Journal of the History of Ideas 64 (4), p. 521-546 [528].)
  107. Template:Cite web
  108. Template:Cite web
  109. Mochrie, Robert (2005). Justice in Exchange: The Economic Philosophy of John Duns ScotusTemplate:Dead link
  110. 110.0 110.1 Victor J. Katz (1995). "Ideas of Calculus in Islam and India", Mathematics Magazine 68 (3), pp. 163–174.
  111. Template:Cite web
  112. 112.0 112.1 Ian G. Pearce (2002). Madhava of Sangamagramma. MacTutor History of Mathematics archive. University of St Andrews.
  113. Radha Charan Gupta (1977) "Parameshvara's rule for the circumradius of a cyclic quadrilateral", Historia Mathematica 4: 67–74
  114. Template:Cite journal
  115. Template:Cite journal
  116. Template:Cite journal
  117. Template:Cite book
  118. Template:Cite book
  119. Template:Cite book
  120. Template:Cite journal
  121. Template:Cite book
  122. Template:Cite book
  123. Robert Recorde, The Whetstone of Witte (London, England: John Kyngstone, 1557), p. 236 (although the pages of this book are not numbered). From the chapter titled "The rule of equation, commonly called Algebers Rule" (p. 236): "Howbeit, for easie alteration of equations. I will propounde a fewe examples, bicause the extraction of their rootes, maie the more aptly bee wroughte. And to avoide the tediouse repetition of these woordes: is equalle to: I will sette as I doe often in worke use, a paire of paralleles, or Gemowe [twin, from gemew, from the French gemeau (twin / twins), from the Latin gemellus (little twin)] lines of one lengthe, thus: = , bicause noe .2. thynges, can be moare equalle." (However, for easy manipulation of equations, I will present a few examples in order that the extraction of roots may be more readily done. And to avoid the tedious repetition of these words "is equal to", I will substitute, as I often do when working, a pair of parallels or twin lines of the same length, thus: = , because no two things can be more equal.)
  124. Template:Cite web
  125. Template:Citation
  126. Template:Cite web
  127. Hurst, Jillian H. “Pioneering Geneticist Mary-Claire King Receives the 2014 Lasker~koshland Special Achievement Award in Medical Science.” The Journal of Clinical Investigation, U.S. National Library of Medicine, 8 Sept. 2014.
  128. Template:Cite book
  129. Template:Cite web
  130. Template:Cite web
  131. Template:Cite web
  132. Template:Cite web
  133. Template:Cite journal
  134. Template:Cite journal
  135. Template:Cite journal
  136. Template:Cite news
  137. Template:Cite web
  138. Template:Cite web
  139. Template:Cite web
  140. Template:Cite web