Sound intensity

From testwiki
Revision as of 10:46, 10 February 2025 by imported>Citation bot (Added publisher. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Physical quantities | #UCB_Category 163/258)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Sound measurements

Sound intensity, also known as acoustic intensity, is defined as the power carried by sound waves per unit area in a direction perpendicular to that area, also called the sound power density and the sound energy flux density.Template:Refn The SI unit of intensity, which includes sound intensity, is the watt per square meter (W/m2). One application is the noise measurement of sound intensity in the air at a listener's location as a sound energy quantity.[1]

Sound intensity is not the same physical quantity as sound pressure. Human hearing is sensitive to sound pressure which is related to sound intensity. In consumer audio electronics, the level differences are called "intensity" differences, but sound intensity is a specifically defined quantity and cannot be sensed by a simple microphone.

Sound intensity level is a logarithmic expression of sound intensity relative to a reference intensity.

Mathematical definition

Sound intensity, denoted I, is defined by 𝐈=p𝐯 where

Both I and v are vectors, which means that both have a direction as well as a magnitude. The direction of sound intensity is the average direction in which energy is flowing.

The average sound intensity during time T is given by 𝐈=1T0Tp(t)𝐯(t)dt. For a plane wave Template:Citation needed, I=2π2ν2δ2ρc Where,

  • ν is frequency of sound,
  • δ is the amplitude of the sound wave particle displacement,
  • ρ is density of medium in which sound is traveling, and
  • c is speed of sound.

Inverse-square law

Template:Further For a spherical sound wave, the intensity in the radial direction as a function of distance r from the centre of the sphere is given by I(r)=PA(r)=P4πr2, where

Thus sound intensity decreases as 1/r2 from the centre of the sphere: I(r)1r2.

This relationship is an inverse-square law.

Sound intensity level

Template:Other uses Sound intensity level (SIL) or acoustic intensity level is the level (a logarithmic quantity) of the intensity of a sound relative to a reference value.

It is denoted LI, expressed in nepers, bels, or decibels, and defined by[2] LI=12ln(II0)Np=log10(II0)B=10log10(II0)dB, where

The commonly used reference sound intensity in air is[3] I0=1pW/m2.

being approximately the lowest sound intensity hearable by an undamaged human ear under room conditions. The proper notations for sound intensity level using this reference are Template:Nobreak or Template:Nobreak, but the notations Template:Nobreak, Template:Nobreak, dBSIL, or dBSIL are very common, even if they are not accepted by the SI.[4]

The reference sound intensity I0 is defined such that a progressive plane wave has the same value of sound intensity level (SIL) and sound pressure level (SPL), since Ip2.

The equality of SIL and SPL requires that II0=p2p02, where Template:Nobreak is the reference sound pressure.

For a progressive spherical wave, pc=z0, where z0 is the characteristic specific acoustic impedance. Thus, I0=p02Ip2=p02pcp2=p02z0.

In air at ambient temperature, Template:Nobreak, hence the reference value Template:Nobreak.[5]

In an anechoic chamber which approximates a free field (no reflection) with a single source, measurements in the far field in SPL can be considered to be equal to measurements in SIL. This fact is exploited to measure sound power in anechoic conditions.

Measurement

Sound intensity is defined as the time averaged product of sound pressure and acoustic particle velocity.[6] Both quantities can be directly measured by using a sound intensity p-u probe comprising a microphone and a particle velocity sensor, or estimated indirectly by using a p-p probe that approximates the particle velocity by integrating the pressure gradient between two closely spaced microphones.[7]

Pressure-based measurement methods are widely used in anechoic conditions for noise quantification purposes. The bias error introduced by a p-p probe can be approximated by[8] I^nppInφpeprms2kΔrρc=In(1φpekΔrprms2/ρcIr), where In is the “true” intensity (unaffected by calibration errors), I^npp is the biased estimate obtained using a p-p probe, prms is the root-mean-squared value of the sound pressure, k is the wave number, ρ is the density of air, c is the speed of sound and Δr is the spacing between the two microphones. This expression shows that phase calibration errors are inversely proportional to frequency and microphone spacing and directly proportional to the ratio of the mean square sound pressure to the sound intensity. If the pressure-to-intensity ratio is large then even a small phase mismatch will lead to significant bias errors. In practice, sound intensity measurements cannot be performed accurately when the pressure-intensity index is high, which limits the use of p-p intensity probes in environments with high levels of background noise or reflections.

On the other hand, the bias error introduced by a p-u probe can be approximated by[8] I^npu=12Re{PV^n*}=12Re{PVn*ejφue}In+φueJn, where I^npu is the biased estimate obtained using a p-u probe, P and Vn are the Fourier transform of sound pressure and particle velocity, Jn is the reactive intensity and φue is the p-u phase mismatch introduced by calibration errors. Therefore, the phase calibration is critical when measurements are carried out under near field conditions, but not so relevant if the measurements are performed out in the far field.[8] The “reactivity” (the ratio of the reactive to the active intensity) indicates whether this source of error is of concern or not. Compared to pressure-based probes, p-u intensity probes are unaffected by the pressure-to-intensity index, enabling the estimation of propagating acoustic energy in unfavorable testing environments provided that the distance to the sound source is sufficient.

References

Template:Reflist

Template:Authority control

  1. Template:Cite web
  2. "Letter symbols to be used in electrical technology – Part 3: Logarithmic and related quantities, and their units", IEC 60027-3 Ed. 3.0, International Electrotechnical Commission, 19 July 2002.
  3. Ross Roeser, Michael Valente, Audiology: Diagnosis (Thieme 2007), p. 240.
  4. Thompson, A. and Taylor, B. N. sec 8.7, "Logarithmic quantities and units: level, neper, bel", Guide for the Use of the International System of Units (SI) 2008 Edition, NIST Special Publication 811, 2nd printing (November 2008), SP811 PDF
  5. Sound Power Measurements, Hewlett Packard Application Note 1230, 1992.
  6. Template:Cite book
  7. Template:Cite book
  8. 8.0 8.1 8.2 Template:Cite journal