Antiholomorphic function

From testwiki
Revision as of 05:50, 8 May 2024 by imported>Prime Entelechy (Change to use proper mathematical formatting.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:More references In mathematics, antiholomorphic functions (also called antianalytic functions[1]) are a family of functions closely related to but distinct from holomorphic functions.

A function of the complex variable z defined on an open set in the complex plane is said to be antiholomorphic if its derivative with respect to z¯ exists in the neighbourhood of each and every point in that set, where z¯ is the complex conjugate of z.

A definition of antiholomorphic function follows:[1]

"[a] function

f(z)=u+iv

of one or more complex variables

z=(z1,,zn)n

[is said to be anti-holomorphic if (and only if) it] is the complex conjugate of a holomorphic function

f(z)=uiv

."

One can show that if f(z) is a holomorphic function on an open set D, then f(z¯) is an antiholomorphic function on D¯, where D¯ is the reflection of D across the real axis; in other words, D¯ is the set of complex conjugates of elements of D. Moreover, any antiholomorphic function can be obtained in this manner from a holomorphic function. This implies that a function is antiholomorphic if and only if it can be expanded in a power series in z¯ in a neighborhood of each point in its domain. Also, a function f(z) is antiholomorphic on an open set D if and only if the function f(z) is holomorphic on D.

If a function is both holomorphic and antiholomorphic, then it is constant on any connected component of its domain.

References

Template:Reflist


Template:Mathanalysis-stub

  1. 1.0 1.1 Encyclopedia of Mathematics, Springer and The European Mathematical Society, https://encyclopediaofmath.org/wiki/Anti-holomorphic_function, As of 11 September 2020, This article was adapted from an original article by E. D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics, Template:ISBN.