Axiom of dependent choice

From testwiki
Revision as of 01:45, 27 July 2024 by imported>Jess Riedel (link text should be closely related to link)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In mathematics, the axiom of dependent choice, denoted by 𝖣𝖢, is a weak form of the axiom of choice (𝖠𝖢) that is still sufficient to develop much of real analysis. It was introduced by Paul Bernays in a 1942 article in reverse mathematics that explores which set-theoretic axioms are needed to develop analysis.[lower-alpha 1]

Formal statement

A homogeneous relation R on X is called a total relation if for every aX, there exists some bX such that aRb is true.

The axiom of dependent choice can be stated as follows: For every nonempty set X and every total relation R on X, there exists a sequence (xn)n in X such that

xnRxn+1 for all n.

In fact, x0 may be taken to be any desired element of X. (To see this, apply the axiom as stated above to the set of finite sequences that start with x0 and in which subsequent terms are in relation R, together with the total relation on this set of the second sequence being obtained from the first by appending a single term.)

If the set X above is restricted to be the set of all real numbers, then the resulting axiom is denoted by 𝖣𝖢.

Use

Even without such an axiom, for any n, one can use ordinary mathematical induction to form the first n terms of such a sequence. The axiom of dependent choice says that we can form a whole (countably infinite) sequence this way.

The axiom 𝖣𝖢 is the fragment of 𝖠𝖢 that is required to show the existence of a sequence constructed by transfinite recursion of countable length, if it is necessary to make a choice at each step and if some of those choices cannot be made independently of previous choices.

Equivalent statements

Over 𝖹𝖥 (Zermelo–Fraenkel set theory without the axiom of choice), 𝖣𝖢 is equivalent to the Baire category theorem for complete metric spaces.[1]

It is also equivalent over 𝖹𝖥 to the downward Löwenheim–Skolem theorem.[lower-alpha 2][2]

𝖣𝖢 is also equivalent over 𝖹𝖥 to the statement that every pruned tree with ω levels has a branch (proof below).

Furthermore, 𝖣𝖢 is equivalent to a weakened form of Zorn's lemma; specifically 𝖣𝖢 is equivalent to the statement that any partial order such that every well-ordered chain is finite and bounded, must have a maximal element.[3]

Relation with other axioms

Unlike full 𝖠𝖢, 𝖣𝖢 is insufficient to prove (given 𝖹𝖥) that there is a non-measurable set of real numbers, or that there is a set of real numbers without the property of Baire or without the perfect set property. This follows because the Solovay model satisfies 𝖹𝖥+𝖣𝖢, and every set of real numbers in this model is Lebesgue measurable, has the Baire property and has the perfect set property.

The axiom of dependent choice implies the axiom of countable choice and is strictly stronger.[4][5]

It is possible to generalize the axiom to produce transfinite sequences. If these are allowed to be arbitrarily long, then it becomes equivalent to the full axiom of choice.

Notes

Template:Notelist

References

Template:Reflist

Template:Set theory


Cite error: <ref> tags exist for a group named "lower-alpha", but no corresponding <references group="lower-alpha"/> tag was found

  1. "The Baire category theorem implies the principle of dependent choices." Template:Cite journal
  2. The converse is proved in Template:Cite book
  3. Template:Citation
  4. Bernays proved that the axiom of dependent choice implies the axiom of countable choice See esp. p. 86 in Template:Cite journal
  5. For a proof that the Axiom of Countable Choice does not imply the Axiom of Dependent Choice see Template:Citation