Cantor distribution

From testwiki
Revision as of 19:39, 10 November 2023 by imported>Ozzie10aaaa (Cleaned up using AutoEd)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Refimprove Template:Probability distribution

The Cantor distribution is the probability distribution whose cumulative distribution function is the Cantor function.

This distribution has neither a probability density function nor a probability mass function, since although its cumulative distribution function is a continuous function, the distribution is not absolutely continuous with respect to Lebesgue measure, nor does it have any point-masses. It is thus neither a discrete nor an absolutely continuous probability distribution, nor is it a mixture of these. Rather it is an example of a singular distribution.

Its cumulative distribution function is continuous everywhere but horizontal almost everywhere, so is sometimes referred to as the Devil's staircase, although that term has a more general meaning.

Characterization

The support of the Cantor distribution is the Cantor set, itself the intersection of the (countably infinitely many) sets:

C0=[0,1]C1=[0,1/3][2/3,1]C2=[0,1/9][2/9,1/3][2/3,7/9][8/9,1]C3=[0,1/27][2/27,1/9][2/9,7/27][8/27,1/3][2/3,19/27][20/27,7/9][8/9,25/27][26/27,1]C4=[0,1/81][2/81,1/27][2/27,7/81][8/81,1/9][2/9,19/81][20/81,7/27][8/27,25/81][26/81,1/3][2/3,55/81][56/81,19/27][20/27,61/81][62/81,21/27][8/9,73/81][74/81,25/27][26/27,79/81][80/81,1]C5=

The Cantor distribution is the unique probability distribution for which for any Ct (t ∈ { 0, 1, 2, 3, ... }), the probability of a particular interval in Ct containing the Cantor-distributed random variable is identically 2t on each one of the 2t intervals.

Moments

It is easy to see by symmetry and being bounded that for a random variable X having this distribution, its expected value E(X) = 1/2, and that all odd central moments of X are 0.

The law of total variance can be used to find the variance var(X), as follows. For the above set C1, let Y = 0 if X ∈ [0,1/3], and 1 if X ∈ [2/3,1]. Then:

var(X)=E(var(XY))+var(E(XY))=19var(X)+var{1/6with probability 1/25/6with probability 1/2}=19var(X)+19

From this we get:

var(X)=18.

A closed-form expression for any even central moment can be found by first obtaining the even cumulants[1]

κ2n=22n1(22n1)B2nn(32n1),

where B2n is the 2nth Bernoulli number, and then expressing the moments as functions of the cumulants.

References

Template:Reflist

Further reading

Template:ProbDistributions Template:Clear