Testwiki:Reference desk/Archives/Mathematics/2024 November 21
Template:Error:not substituted
|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < November 20 ! width="25%" align="center"|<< Oct | November | Dec >> ! width="20%" align="right" |Current desk > |}
| Welcome to the Wikipedia Mathematics Reference Desk Archives |
|---|
| The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages. |
Contents
November 21
Is it possible to adapt Nigel’s Smart algorithm for establshing an isomorphism when the curve is only partially anomalous ?
An anomalous elliptic curve is a curve for which . But in my case, the curve has order j×q and the underlying field has order i×q. In the situation I’m thinking about, I do have 2 points such as both G∈q and P∈q subgroup and where P=s×G.
So since the scalar lies in a common part of the additive group from both the curve along it’s underlying base field, is it possible to transfer the discrete logarithm to the underlying finite field ? Or does anomalous curves requires the whole embedding field’s order to match the one of the curve even if the discrete logarithm solution lies into a common smaller group ?
If yes, how to adapt the Nigel’s smart algorithm used for solving the discrete logarithm inside anomalous curves ? The aim is to etablish an isomorphism between the common subgroup generated by E and 82.66.26.199 (talk) 19:47, 21 November 2024 (UTC)