Testwiki:Reference desk/Archives/Mathematics/2024 November 15
From testwiki
Revision as of 04:05, 30 November 2024 by imported>Scsbot (edited by robot: archiving November 15)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Template:Error:not substituted
{| width = "100%"
|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < November 14 ! width="25%" align="center"|<< Oct | November | Dec >> ! width="20%" align="right" |Current desk > |}
| Welcome to the Wikipedia Mathematics Reference Desk Archives |
|---|
| The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages. |
Contents
November 15
Are there morphisms when enlarging a prime field sharing a common suborder/subgroup ?
Simple question : I have a prime field having modulus where p−1 contains as prime factor, and I have a larger prime field also having as it’s suborder/subgroup. Are there special cases where it’s possible to lift 2 ’s elements to modulus while keeping their discrete logarithm if those 2 elements lies only within the ’s subgroup ? Without solving the discrete logarithm of course ! 82.66.26.199 (talk) 11:36, 15 November 2024 (UTC)
- Clearly it is possible, since any two groups of order o are isomorphic. Existence of a general algorithm, however, is equivalent to solving the discrete log problem (consider the problem of determining a non-trivial character). Tito Omburo (talk) 11:40, 15 November 2024 (UTC)
- So how to do it without solving the discrete logarithm ? Because of course, I was meaning without solving the discrete logarithm. 2A01:E0A:401:A7C0:9CB:33F3:E8EB:8A5D (talk) 12:51, 15 November 2024 (UTC)
- It can't. You're basically asking if there is some canonical isomorphism between two groups of order O, and there just isn't one. Tito Omburo (talk) 15:00, 15 November 2024 (UTC)
- Even if it’s about enlarging instead of shrinking ? Is in theory impossible to build a relation/map or is that no such relation exists yet ? 2A01:E0A:401:A7C0:9CB:33F3:E8EB:8A5D (talk) 08:48, 16 November 2024 (UTC)
- At least into the group of complex roots of unity, where a logarithm is known, it is easily seen to be equivalent to discrete logarithm. In general, there is no relation between the groups of units in GF(p) and GF(q) for p and q distinct primes. Any accidental isomorphisms between subgroups are not canonical. Tito Omburo (talk) 15:02, 16 November 2024 (UTC)
- Even if it’s about enlarging instead of shrinking ? Is in theory impossible to build a relation/map or is that no such relation exists yet ? 2A01:E0A:401:A7C0:9CB:33F3:E8EB:8A5D (talk) 08:48, 16 November 2024 (UTC)
- It can't. You're basically asking if there is some canonical isomorphism between two groups of order O, and there just isn't one. Tito Omburo (talk) 15:00, 15 November 2024 (UTC)
- So how to do it without solving the discrete logarithm ? Because of course, I was meaning without solving the discrete logarithm. 2A01:E0A:401:A7C0:9CB:33F3:E8EB:8A5D (talk) 12:51, 15 November 2024 (UTC)