Testwiki:Reference desk/Archives/Mathematics/2024 January 16
From testwiki
Revision as of 03:51, 31 January 2024 by imported>Scsbot (edited by robot: archiving January 16)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Template:Error:not substituted
{| width = "100%"
|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < January 15 ! width="25%" align="center"|<< Dec | January | Feb >> ! width="20%" align="right" |Current desk > |}
| Welcome to the Wikipedia Mathematics Reference Desk Archives |
|---|
| The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages. |
January 16
Convex polytopes where any two vertices are connected by an edge.
This is true of simplices, are there others? I believe there are, and if so is there a name for them? We have an article on simplicial polytopes, which seems related. There is a theorem that a simple polytope is completely determined by its 1-skeleton, see Simple polytope#Unique reconstruction, and in this case that's a complete graph. But all this proves is that such a polytope, other than a simplex, is not simple. RDBury (talk) 13:59, 16 January 2024 (UTC)
- Such a polytope with vertices should be fundamentally identical to the projection of an -simplex to whichever dimension you're working in. Also, if I'm not mistaken, if we take the "volume" occupied by such a projection to be the projection of the volume occupied by the simplex in dimensions, then regardless of dimension, the resulting polytope should be convex. GalacticShoe (talk) 16:20, 16 January 2024 (UTC)
- Good point. I don't often play with non-convex polytopes and tend to conflate "polytope" with "convex polytope", so I was being careful to specify "convex". In fact, any convex polytope which is the convex hull of its vertices is the projection of a simplex of the same or higher dimension. For the purposes of the question I'm thinking of "proper polytopes", bounded and determined both as the intersection of a finite set of half-planes and as the convex hull of a finite set of points. --RDBury (talk) 17:35, 16 January 2024 (UTC)
- The cyclic polytopes have this property (and much stronger properties) in dimension 4 and above. In 2-D the question is trivial, while in 3-D there is one (known) non-convex example, the Császár polyhedron (and no convex examples other than the tetrahedron). --JBL (talk) 21:01, 16 January 2024 (UTC)
- It seems that the word for the concept you're interested in is 2-neighborly polytope. --JBL (talk) 21:04, 16 January 2024 (UTC)
- Good point. I don't often play with non-convex polytopes and tend to conflate "polytope" with "convex polytope", so I was being careful to specify "convex". In fact, any convex polytope which is the convex hull of its vertices is the projection of a simplex of the same or higher dimension. For the purposes of the question I'm thinking of "proper polytopes", bounded and determined both as the intersection of a finite set of half-planes and as the convex hull of a finite set of points. --RDBury (talk) 17:35, 16 January 2024 (UTC)