Mean transverse energy

From testwiki
Revision as of 09:03, 7 June 2024 by imported>David Eppstein (de-orphan)
(diff) ← Older revision | Latest revision (diff) | Newer revision β†’ (diff)
Jump to navigation Jump to search

Template:Short description

In accelerator physics, the mean transverse energy (MTE) is a quantity that describes the variance of the transverse momentum of a beam. While the quantity has a defined value for any particle beam, it is generally used in the context of photoinjectors for electron beams.[1]

Definition

For a beam consisting of N particles with momenta 𝐩𝐒 and mass m traveling prominently in the n^ direction the mean transverse energy is given by

MTE=1Nip𝐒,𝟐2m

Where 𝐩 is the component of the momentum 𝐩𝐒 perpendicular to the beam axis n^. For a continuous, normalized distribution of particles f(𝐩,𝐩) the MTE is

MTE=p𝟐2mf(𝐩,𝐩)dpd2p

Relation to Other Quantities

Emittance is a common quantity in beam physics which describes the volume of a beam in phase space, and is normally conserved through typical linear beam transformations; for example, one may transition from a beam with a large spatial size and a small momentum spread to one with a small spatial size and a large momentum spread, both cases retaining the same emittance. Due to its conservation, the emittance at the species source (e.g., photocathode for electrons) is the lower limit on attainable emittance.

For a beam born with a spatial size σx and a 1-D MTE the minimum 2-D (x and px) emittance is[2]

ε=σxMTEmc2

The emittance of each dimension may be multiplied together to get the higher dimensional emittance. For a photocathode the spatial size of the beam is typically equal to the spatial size of the ionizing laser beam and the MTE may depend on several factors involving the cathode, the laser, and the extraction field. Due to the linear independence of the laser spot size and the MTE, the beam size is often factored out, formulating the 1-D thermal emittance[3]

εth=MTEmec2

Likewise, the maximum brightness, or phase space density, is given by

Bn,4D=m0c2ϵ0E02πMTE

References

Template:Reflist