Glossary of Lie groups and Lie algebras
Template:Short description This is a glossary for the terminology applied in the mathematical theories of Lie groups and Lie algebras. For the topics in the representation theory of Lie groups and Lie algebras, see Glossary of representation theory. Because of the lack of other options, the glossary also includes some generalizations such as quantum group.
Template:Lie groupsNotations:
- Throughout the glossary, denotes the inner product of a Euclidean space E and denotes the rescaled inner product
A
Template:Glossary Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
B
Template:Glossary Template:Term Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn Template:Defn
C
Template:Term Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn
D
Template:Glossary Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
E
Template:Glossary Template:Term Template:Defn
F
Template:Glossary Template:Term
G
Template:Term Template:Defn Template:Defn Template:Defn
H
Template:Glossary Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn
I
Template:Glossary Template:Term Template:Defn Template:Term Template:Defn
J
Template:Glossary Template:Term Template:Defn Template:Defn
K
Template:Term Template:Defn Template:Defn
L
Template:Glossary Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn
N
Template:Glossary Template:Term Template:Defn Template:Defn Template:Defn Template:Defn
M
Template:Term Template:Defn Template:Defn
P
Template:Term Template:Defn Template:Defn
Q
R
Template:Glossary Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn
S
Template:Glossary Template:Term Template:Defn
Template:Term Template:Defn Template:Defn Template:Defn Template:Defn Template:Defn
Classical Lie algebras:
| Special linear algebra | (traceless matrices) | ||
| Orthogonal algebra | |||
| Symplectic algebra | |||
| Orthogonal algebra |
Exceptional Lie algebras:
| Root System | dimension |
|---|---|
| G2 | 14 |
| F4 | 52 |
| E6 | 78 |
| E7 | 133 |
| E8 | 248 |
Template:Term Template:Defn Template:Defn Template:Defn
Template:Term Template:Defn Template:Defn
T
Template:Term Template:Defn Template:Defn
U
V
W
Template:Term Template:Defn Template:Defn Template:Defn Template:Defn
References
- Template:Citation
- Erdmann, Karin & Wildon, Mark. Introduction to Lie Algebras, 1st edition, Springer, 2006. Template:ISBN
- Humphreys, James E. Introduction to Lie Algebras and Representation Theory, Second printing, revised. Graduate Texts in Mathematics, 9. Springer-Verlag, New York, 1978. Template:ISBN
- Jacobson, Nathan, Lie algebras, Republication of the 1962 original. Dover Publications, Inc., New York, 1979. Template:Isbn
- Template:Cite book
- Claudio Procesi (2007) Lie Groups: an approach through invariants and representation, Springer, Template:Isbn.
- Template:Citation.
- J.-P. Serre, "Lie algebras and Lie groups", Benjamin (1965) (Translated from French)