Testwiki:Reference desk/Archives/Mathematics/2019 June 6

From testwiki
Revision as of 04:25, 16 June 2019 by imported>Scsbot (edited by robot: archiving June 6)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Error:not substituted

{| width = "100%"

|- ! colspan="3" align="center" | Mathematics desk |- ! width="20%" align="left" | < June 5 ! width="25%" align="center"|<< May | June | Jul >> ! width="20%" align="right" |Current desk > |}

Welcome to the Wikipedia Mathematics Reference Desk Archives
The page you are currently viewing is a transcluded archive page. While you can leave answers for any questions shown below, please ask new questions on one of the current reference desk pages.


June 6

Banach-Tarski paradox quantifier depth

I'm trying to figure out the formal statement of the Banach-Tarski (BT) paradox. Something like: there exist sets A,B,C,D,E in R3 whose union A+B+C+D+E is the unit ball B1, and there are rigid motions S,T,U,V so that A+S(B)+T(C)=B1 and U(D)+V(E)=another copy of B1. A rigid motion is just a rotation and translation so it can be written as a 5-tuple of reals. Meanwhile, to say two sets of real triples are equal (like G=H) uses a universal quantifier over real triples, x.(xGxH)(xGxH).

Since the outer (existential) quantifier is over sets of reals, would we say it is a third-order arithmetic quantifier? The inner one is (nested) universal quantifiers over reals so that would be second-order arithmetic. Does the whole thing become Σ22?

At first I didn't notice that the outer quantifiers were over sets of reals, so the BT paradox seemed to conflict with Schoenfeld's absoluteness theorem. But I think the set quantifiers mean BT is not analytic, so no issue there. Thanks.

173.228.123.207 (talk) 20:48, 6 June 2019 (UTC)