Sims conjecture

From testwiki
Revision as of 17:37, 15 August 2024 by imported>Vstephen B
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In mathematics, the Sims conjecture is a result in group theory, originally proposed by Charles Sims.[1] He conjectured that if G is a primitive permutation group on a finite set S and Gα denotes the stabilizer of the point α in S, then there exists an integer-valued function f such that f(d)|Gα| for d the length of any orbit of Gα in the set S{α}.

The conjecture was proven by Peter Cameron, Cheryl Praeger, Jan Saxl, and Gary Seitz using the classification of finite simple groups, in particular the fact that only finitely many isomorphism types of sporadic groups exist.

The theorem reads precisely as follows.[2]

Template:Math theorem

Thus, in a primitive permutation group with "large" stabilizers, these stabilizers cannot have any small orbit. A consequence of their proof is that there exist only finitely many connected distance-transitive graphs having degree greater than 2.[3][4][5]

References

Template:Reflist


Template:Group-theory-stub Template:Graph-stub