Popov criterion

From testwiki
Revision as of 21:17, 11 April 2023 by imported>Invasive Spices ([[]])
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In nonlinear control and stability theory, the Popov criterion is a stability criterion discovered by Vasile M. Popov for the absolute stability of a class of nonlinear systems whose nonlinearity must satisfy an open-sector condition. While the circle criterion can be applied to nonlinear time-varying systems, the Popov criterion is applicable only to autonomous (that is, time invariant) systems.

System description

The sub-class of Lur'e systems studied by Popov is described by:

x˙=Ax+buξ˙=uy=cx+dξ

u=φ(y)

where xRn, ξ,u,y are scalars, and A,b,c and d have commensurate dimensions. The nonlinear element Φ: RR is a time-invariant nonlinearity belonging to open sector (0, ∞), that is, Φ(0) = 0 and yΦ(y) > 0 for all y not equal to 0.

Note that the system studied by Popov has a pole at the origin and there is no direct pass-through from input to output, and the transfer function from u to y is given by

H(s)=ds+c(sIA)1b

Criterion

Consider the system described above and suppose

  1. A is Hurwitz
  2. (A,b) is controllable
  3. (A,c) is observable
  4. d > 0 and
  5. Φ ∈ (0,∞)

then the system is globally asymptotically stable if there exists a number r > 0 such that infωRe[(1+jωr)H(jω)]>0.

See also

References