Lyra2

From testwiki
Revision as of 02:09, 24 December 2024 by imported>VulcanSphere (Fixing punctuation)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Multiple issues Lyra2 is a password hashing scheme (PHS) that can also function as a key derivation function (KDF). It gained recognition during the Password Hashing Competition in July 2015,[1] which was won by Argon2. It is also used in proof-of-work algorithms such as Lyra2REv2,[2] adopted by Vertcoin[3] and MonaCoin,[4] among other cryptocurrencies.[5]

Lyra2 was designed by Marcos A. Simplicio Jr., Leonardo C. Almeida, Ewerton R. Andrade, Paulo C. F. dos Santos, and Paulo S. L. M. Barreto from Escola Politécnica da Universidade de São Paulo.[6] It is based on Lyra,[7][8] which had been created by the same team. Lyra2 includes:

  • The ability to configure the desired amount of memory, processing time, and parallelism for the algorithm.
  • High memory usage with processing time similar to scrypt.

In addition, it:[9]

  • Provides higher security against time-memory trade-offs.
  • Allows legitimate users to better benefit from the parallelism capabilities of their own platforms.
  • Increases the costs of creating dedicated hardware to attack the algorithm.
  • Balances resistance against side-channel threats and attacks using cheaper, slower storage devices.

Lyra2 is released into the public domain.Template:Citation needed

Design

As any PHS, Lyra2 takes as input a salt and a password, creating a pseudorandom output that can then be used as key material for cryptographic algorithms or as an authentication string.[10]Template:Failed verificationTemplate:Citation needed

Internally, the scheme's memory is organized as a matrix that is expected to remain in memory during the whole password hashing process. Since its cells are iteratively read and written, discarding a cell for saving memory leads to the need of recomputing it whenever it is accessed once again, until the point it was last modified.[5]

The construction and visitation of the matrix is done using a stateful combination of the absorbing, squeezing and duplexing operations of the underlying sponge (i.e., its internal state is never reset to zero), ensuring the sequential nature of the whole process.

Also, the number of times the matrix's cells are revisited after initialization is defined by the user, allowing Lyra2's execution time to be fine-tuned according to the target platform's resources.

Inputs

The algorithm additionally enables parameterization in terms of:[11]

  • degree of parallelism (number of threads p)
  • underlying permutation function (can be seen as the main cryptographic primitive)
  • number of blocks used by the underlying permutation function (bitrate)
  • number of rounds performed for the underlying permutation function (ρ)
  • number of bits to be used in rotations (ω)
  • output length(κ)

Functions/symbols

||
Concatenate two strings
Template:Code
Bitwise XOR
Template:Code
Word wise add operation (i.e., ignoring carries between words)
Template:Code
Modulus
Template:Code
The target machine's word size (usually, 32 or 64)
Template:Code
Number of bits to be used in rotations (recommended: a multiple of the machine's word size, W)
Template:Code
Right rotation
Template:Code
Number of rounds for reduced squeeze or duplexing operations
Template:Code
Sponge's block size in bytes
Template:Code
Sponge with block size blen (in bytes) and underlying permutation f
Template:Code
Sponge's absorb operation on input
Template:Code
Sponge's squeeze operation of len bytes
Template:Code
Sponge's squeeze operation of len bytes using rho rounds of f
Template:Code
Sponge's duplexing operation on input, producing len bytes
Template:Code
Sponge's duplexing operation on input, using rho rounds of f, producing len bytes
Template:Code
Pads a string to a multiple of blen bytes (padding rule: 10*1)
Template:Code
The least significant word of input
Template:Code
Length of a string, in bytes
Template:Code
Synchronize parallel threads
Template:Code
Swap the value of two inputs
Template:Code
Number of columns on the memory matrix (usually, 64, 128, 256, 512 or 1024)
Template:Code
Degree of parallelism (Template:Code and Template:Code)

Algorithm without parallelism

Template:Pre

Algorithm with parallelism

for each i in [0..P]
	** Bootstrapping phase: Initializes the sponge's state and local variables
	
	# Byte representation of input parameters (others can be added)
	params =  outlen || len(password) || len(salt) || t_cost || m_cost || C || P || i

	# Initializes the sponge's state (after that, password can be overwritten)
	H_i.absorb( pad(password || salt || params) )

	# Initializes visitation step, window and first rows that will feed 
	gap = 1
	stp = 1
	wnd = 2
	sqrt = 2
	sync = 4
	j = i

	prev0 = 2
	rowP = 1
	prevP = 0

	** Setup phase: Initializes a (m_cost x C) memory matrix, its cells having blen-byte cells

	# Initializes M_i[0], M_i[1] and M_i[2]
	for col = 0 to C-1
		M_i[0][C-1-col] = H_i.squeeze_{rho}(blen)
	for col = 0 to C-1
		M_i[1][C-1-col] = H_i.duplexing_{rho}( M_i[0][col], blen)
	for col = 0 to C-1
		M_i[2][C-1-col] = H_i.duplexing_{rho}( M_i[1][col], blen)

	# Filling Loop: initializes remainder rows
	for row0 = 3 to ( (m_cost / P) - 1 )
		# Columns Loop: M_i[row0] is initialized and M_j[row1] is updated
		for col = 0 to C-1
			rand = H_i.duplexing_{rho}( M_j[rowP][col] [+] M_i[prev0][col] [+] M_j[prevP][col], blen)
			M_i[row0][C-1-col] = M_i[prev0][col] ^ rand
			M_j[rowP][col] = M_j[rowP][col] ^ ( rand >>> omega )

		# Rows to be revisited in next loop
		prev0 = row0
		prevP = rowP
		rowP = (rowP + stp) % wnd

		# Window fully revisited
		if (rowP = 0)
			# Doubles window and adjusts step
			wnd = 2 * wnd
			stp = sqrt + gap
			gap = -gap
		
			# Doubles sqrt every other iteration
			if (gap = -1)
				sqrt = 2 * sqrt
		
		# Synchronize point
		if (row0 = sync)
			sync = sync + (sqrt / 2)
			j = (j + 1) % P
			syncThreads()

	syncThreads()
	
	** Wandering phase: Iteratively overwrites pseudorandom cells of the memory matrix

	wnd = m_cost / (2 * P)
	sync = sqrt
	off0 = 0
	offP = wnd

	# Visitation Loop: (2 * m_cost * t_cost / P) rows revisited in pseudorandom fashion
	for wCount = 0 to ( ( (m_cost * t_cost) / P) - 1)
		# Picks pseudorandom rows and slices (j)
		row0 = off0 + (lsw(rand) % wnd)
		rowP = offP + (lsw( rand >>> omega ) % wnd)
		j = lsw( ( rand >>> omega ) >>> omega ) % P

		# Columns Loop: update M_i[row0]
		for col = 0 to C-1
			# Picks pseudorandom column	
			col0 = lsw( ( ( rand >>> omega ) >>> omega ) >>> omega ) % C

			rand = H_i.duplexing_{rho}( M_i[row0][col] [+] M_i[prev0][col0] [+] M_j[rowP][col], blen)
			M_i[row0][col] = M_i[row0][col] ^ rand

		# Next iteration revisits most recently updated rows
		prev0 = row0
		
		# Synchronize point
		if (wCount = sync)
			sync = sync + sqrt
			swap(off0,offP)
			syncThreads()

	syncThreads()

	** Wrap-up phase: output computation

	# Absorbs a final column with a full-round sponge
	H_i.absorb( M_i[row0][0] )

	# Squeezes outlen bits with a full-round sponge
	output_i = H_i.squeeze(outlen)

# Provides outlen-long bitstring as output
return output_0 ^ ... ^ output_{P-1}

Security analysis

Against Lyra2, the processing cost of attacks using 1/2n+2 of the amount of memory employed by a legitimate user is expected to be between O(22nTR3) and O(22nTRn+2), the latter being a better estimate for n1, instead of the O(R) achieved when the amount of memory is O(R), where T is a user-defined parameter to define a processing time.

This compares well to Scrypt, which displays a cost of O(R2) when the memory usage is highO(1),[12] and with other solutions in the literature, for which the results are usually O(RT+1).[7][13][14][15]

Nonetheless, in practice these solutions usually involve a value of R (memory usage) lower than those attained with the Lyra2 for the same processing time.[16][17][18][19][20]

Performance

Performance of SSE-enabled Lyra2, for C = 256, ρ = 1, p = 1, and different T and R settings, compared with SSE-enabled Scrypt and memory-hard PHC finalists with minimum parameters.

The processing time obtained with an SSE single-core implementation of Lyra2 is illustrated in the hereby shown figure. This figure was extracted from,[9] and is very similar to, third-party benchmarks performed during the PHC context.[16][17][18][19][20]

The results depicted correspond to the average execution time of Lyra2 configured with C=256, ρ=1, b=768 bits (i.e., the inner state has 256 bits), and different T and R settings, giving an overall idea of possible combinations of parameters and the corresponding usage of resources.

As shown in this figure, Lyra2 is able to execute in: less than 1 s while using up to 400 MB (with R=214 and T=5) or up to 1 GB of memory (with R4.2104 and T=1); or in less than 5 s with 1.6 GB (with R=216 and T=6).

All tests were performed on an Intel Xeon E5-2430 (2.20 GHz with 12 Cores, 64 bits) equipped with 48 GB of DRAM, running Ubuntu 14.04 LTS 64 bits, and the source code was compiled using GCC 4.9.2.[9]


Extensions

Lyra offers two main extensions:[11]

  • **Lyra2-δ**: Provides more control over the algorithm's bandwidth usage.
  • **Lyra2p**: Takes advantage of parallelism capabilities on the user's platform.


References

Template:Reflist

Template:Cryptography navbox