Graphical lasso
In statistics, the graphical lasso[1] is a sparse penalized maximum likelihood estimator for the concentration or precision matrix (inverse of covariance matrix) of a multivariate elliptical distribution. The original variant was formulated to solve Dempster's covariance selection problem[2][3] for the multivariate Gaussian distribution when observations were limited. Subsequently, the optimization algorithms to solve this problem were improved[4] and extended[5] to other types of estimators and distributions.
Setting
Consider observations from multivariate Gaussian distribution . We are interested in estimating the precision matrix .
The graphical lasso estimator is the such that:
where is the sample covariance, and is the penalizing parameter.[4]
Application
To obtain the estimator in programs, users could use the R package glasso,[6] GraphicalLasso() class in the scikit-learn Python library,[7] or the skggm Python package[8] (similar to scikit-learn).