Congruence-permutable algebra

From testwiki
Revision as of 15:23, 17 December 2020 by 129.67.148.5 (talk) (Examples)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In universal algebra, a congruence-permutable algebra is an algebra whose congruences commute under composition. This symmetry has several equivalent characterizations, which lend to the analysis of such algebras. Many familiar varieties of algebras, such as the variety of groups, consist of congruence-permutable algebras, but some, like the variety of lattices, have members that are not congruence-permutable.

Template:TOClimit

Definition

Given an algebra 𝐀, a pair of congruences α,βCon(𝐀) are said to permute when αβ=βα.Template:R An algebra 𝐀 is called congruence-permutable when each pair of congruences of 𝐀 permute.Template:R A variety of algebras 𝒱 is referred to as congruence-permutable when every algebra in 𝒱 is congruence-permutable.Template:R

Properties

In 1954 Maltsev gave two other conditions that are equivalent to the one given above defining a congruence-permutable variety of algebras. This initiated the study of congruence-permutable varieties.Template:R

Theorem (Maltsev, 1954)

Suppose that 𝒱 is a variety of algebras. The following are equivalent:

Template:Ordered list

Such a term is called a Maltsev term and congruence-permutable varieties are also known as Maltsev varieties in his honor.Template:R

Examples

Most classical varieties in abstract algebra, such as groupsTemplate:R, ringsTemplate:R, and Lie algebrasTemplate:Citation needed are congruence-permutable. Any variety that contains a group operation is congruence-permutable, and the Maltsev term is xy1z.Template:Citation needed

Nonexamples

Viewed as a lattice the chain with three elements is not congruence-permutable and hence neither is the variety of lattices.Template:R

References

Template:Reflist

Template:Abstract-algebra-stub