Stable process

From testwiki
Revision as of 21:12, 11 January 2017 by 148.81.201.250 (talk)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In probability theory, a stable process is a type of stochastic process. It includes stochastic processes whose associated probability distributions are stable distributions.[1]

Examples of stable processes include the Wiener process, or Brownian motion, whose associated probability distribution is the normal distribution. They also include the Cauchy process. For the symmetric Cauchy process, the associated probability distribution is the Cauchy distribution.[1]

The degenerate case, where there is no random element, i.e., X(t)=mt, where m is a constant, is also a stable process.[1]

References

Template:Reflist

Template:Stochastic processes