Web (differential geometry)

From testwiki
Revision as of 10:18, 19 April 2022 by imported>Citation bot (Add: s2cid, bibcode. | Use this bot. Report bugs. | Suggested by Abductive | Category:Differential geometry stubs | #UCB_Category 97/122)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

In mathematics, a web permits an intrinsic characterization in terms of Riemannian geometry of the additive separation of variables in the Hamilton–Jacobi equation.[1][2]

Formal definition

An orthogonal web on a Riemannian manifold (M,g) is a set 𝒮=(𝒮1,,𝒮n) of n pairwise transversal and orthogonal foliations of connected submanifolds of codimension 1 and where n denotes the dimension of M.

Note that two submanifolds of codimension 1 are orthogonal if their normal vectors are orthogonal and in a nondefinite metric orthogonality does not imply transversality.

Alternative definition

Given a smooth manifold of dimension n, an orthogonal web (also called orthogonal grid or Ricci’s grid) on a Riemannian manifold (M,g) is a set[3] 𝒞=(𝒞1,,𝒞n) of n pairwise transversal and orthogonal foliations of connected submanifolds of dimension 1.

Remark

Since vector fields can be visualized as stream-lines of a stationary flow or as Faraday’s lines of force, a non-vanishing vector field in space generates a space-filling system of lines through each point, known to mathematicians as a congruence (i.e., a local foliation). Ricci’s vision filled Riemann’s n-dimensional manifold with n congruences orthogonal to each other, i.e., a local orthogonal grid.

Differential geometry of webs

A systematic study of webs was started by Blaschke in the 1930s. He extended the same group-theoretic approach to web geometry.

Classical definition

Let M=Xnr be a differentiable manifold of dimension N=nr. A d-web W(d,n,r) of codimension r in an open set DXnr is a set of d foliations of codimension r which are in general position.

In the notation W(d,n,r) the number d is the number of foliations forming a web, r is the web codimension, and n is the ratio of the dimension nr of the manifold M and the web codimension. Of course, one may define a d-web of codimension r without having r as a divisor of the dimension of the ambient manifold.

See also

Notes

Template:Reflist

References


Template:Differential-geometry-stub