Activating function

From testwiki
Revision as of 15:43, 29 December 2024 by imported>Citation bot (Add: pmid, volume. | Use this bot. Report bugs. | Suggested by Dominic3203 | Category:Computational neuroscience | #UCB_Category 8/122)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:For

The activating function is a mathematical formalism that is used to approximate the influence of an extracellular field on an axon or neurons.[1][2][3][4][5][6] It was developed by Frank Rattay and is a useful tool to approximate the influence of functional electrical stimulation (FES) or neuromodulation techniques on target neurons.[7] It points out locations of high hyperpolarization and depolarization caused by the electrical field acting upon the nerve fiber. As a rule of thumb, the activating function is proportional to the second-order spatial derivative of the extracellular potential along the axon.

Equations

In a compartment model of an axon, the activating function of compartment n, fn, is derived from the driving term of the external potential, or the equivalent injected current

fn=1/c(Vn1eVneRn1/2+Rn/2+Vn+1eVneRn+1/2+Rn/2+...),

where c is the membrane capacity, Vne the extracellular voltage outside compartment n relative to the ground and Rn the axonal resistance of compartment n.

The activating function represents the rate of membrane potential change if the neuron is in resting state before the stimulation. Its physical dimensions are V/s or mV/ms. In other words, it represents the slope of the membrane voltage at the beginning of the stimulation.[8]

Following McNeal's[9] simplifications for long fibers of an ideal internode membrane, with both membrane capacity and conductance assumed to be 0 the differential equation determining the membrane potential Vm for each node is:

dVnmdt=[iion,n+dΔx4ρiL(Vn1m2Vnm+Vn+1mΔx2+Vn1e2Vne+Vn+1eΔx2)]/c,

where d is the constant fiber diameter, Δx the node-to-node distance, L the node length ρi the axomplasmatic resistivity, c the capacity and iion the ionic currents. From this the activating function follows as:

fn=dΔx4ρiLcVn1e2Vne+Vn+1eΔx2.

In this case the activating function is proportional to the second order spatial difference of the extracellular potential along the fibers. If L=Δx and Δx0 then:

f=d4ρicδ2Veδx2.

Thus f is proportional to the second order spatial differential along the fiber.

Interpretation

Positive values of f suggest a depolarization of the membrane potential and negative values a hyperpolarization of the membrane potential.

References

Template:Reflist