Schwarzschild radius

From testwiki
Revision as of 18:36, 20 February 2025 by imported>Avsa
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Template:Use dmy dates

In a mass-radius plot, the Schwarzschild radius represents the upper limit of any object that can exist (the Compton Wavelength and Hubble radius being other 2 limits forming a triangle). It's intersection with the Compton Wavelength defines all Planck Units.

The Schwarzschild radius or the gravitational radius is a physical parameter in the Schwarzschild solution to Einstein's field equations that corresponds to the radius defining the event horizon of a Schwarzschild black hole. It is a characteristic radius associated with any quantity of mass. The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916.

The Schwarzschild radius is given as rs=2GMc2, where G is the gravitational constant, M is the object mass, and c is the speed of light.Template:Refn[1][2]

History

In 1916, Karl Schwarzschild obtained the exact solution[3][4] to Einstein's field equations for the gravitational field outside a non-rotating, spherically symmetric body with mass M (see Schwarzschild metric). The solution contained terms of the form 1rs/r and 11rs/r, which become singular at r=0 and r=rs respectively. The rs has come to be known as the Schwarzschild radius. The physical significance of these singularities was debated for decades. It was found that the one at r=rs is a coordinate singularity, meaning that it is an artifact of the particular system of coordinates that was used; while the one at r=0 is a spacetime singularity and cannot be removed.[5] The Schwarzschild radius is nonetheless a physically relevant quantity, as noted above and below.

This expression had previously been calculated, using Newtonian mechanics, as the radius of a spherically symmetric body at which the escape velocity was equal to the speed of light. It had been identified in the 18th century by John Michell[6] and Pierre-Simon Laplace.[7]

Parameters

The Schwarzschild radius of an object is proportional to its mass. Accordingly, the Sun has a Schwarzschild radius of approximately Template:Convert,[8] whereas Earth's is approximately Template:Convert[8] and the Moon's is approximately Template:Convert.

Object's Schwarzschild radius
Object Mass M Schwarzschild radius 2GMc2 Actual radius r Schwarzschild density 3c632πG3M2 or 3c28πGr2
Milky Way Template:Val Template:Val (Template:Val) Template:Val (Template:Val) Template:Val
SMBH in Phoenix A (one of the largest known black holes) Template:Val Template:Val (~2000 AU) Template:Val
Ton 618 Template:Val Template:Val (~1300 AU) Template:Val
SMBH in NGC 4889 Template:Val Template:Val (~410 AU) Template:Val
SMBH in Messier 87[9] Template:Val Template:Val (~130 AU) Template:Val
SMBH in Andromeda Galaxy[10] Template:Val Template:Val (3.3 AU) Template:Val
Sagittarius A* (SMBH in Milky Way)[11] Template:Val Template:Val (0.08 AU) Template:Val
SMBH in NGC 4395[12] Template:Val Template:Val (1.53 R) Template:Val
Potential intermediate black hole in HCN-0.009-0.044[13][14] Template:Val Template:Val (14.8 R🜨) Template:Val
Resulting intermediate black hole from GW190521 merger[15] Template:Val Template:Val (0.066 R🜨) Template:Val
Sun Template:Val Template:Val Template:Val Template:Val
Jupiter Template:Val Template:Val Template:Val Template:Val
Saturn Template:Val Template:Val Template:Val Template:Val
Neptune 1.024Template:E kg 1.52Template:E m 2.47Template:E m 6.97Template:E kg/m3
Uranus 8.681Template:E kg 1.29Template:E m 2.56Template:E m 9.68Template:E kg/m3
Earth 5.97Template:E kg 8.87Template:E m 6.37Template:E m 2.04Template:E kg/m3
Venus 4.867Template:E kg 7.21Template:E m 6.05Template:E m 3.10Template:E kg/m3
Mars 6.39Template:E kg 9.47Template:E m 3.39Template:E m 1.80Template:E kg/m3
Mercury 3.285Template:E kg 4.87Template:E m 2.44Template:E m 6.79Template:E kg/m3
Moon 7.35Template:E kg 1.09Template:E m 1.74Template:E m 1.35Template:E kg/m3
Human 70 kg 1.04Template:E m ~5Template:E m 1.49Template:E kg/m3
Planck mass 2.18Template:E kg 3.23Template:E m (2 lP) 1.54Template:E kg/m3

Derivation

Template:Main

The simplest way of deriving the Schwarzschild radius comes from the equality of the modulus of a spherical solid mass' rest energy with its gravitational energy:

Mc2=2GM2r

So, the Schwarzschild radius reads as

r=2GMc2

Black hole classification by Schwarzschild radius

Black hole classifications
Class Approx.
mass
Approx.
radius
Supermassive black hole 10Template:Sup–10Template:Sup [[solar mass|MTemplate:Sub]] 0.002–2000 AU
Intermediate-mass black hole 10Template:Sup MTemplate:Sub 3 x 10Template:Sup km ≈ [[Mars radius|RTemplate:Sub]]
Stellar black hole 10 MTemplate:Sub 30 km
Micro black hole up to MTemplate:Sub up to 0.1 mm

Any object whose radius is smaller than its Schwarzschild radius is called a black hole.[16]Template:Rp The surface at the Schwarzschild radius acts as an event horizon in a non-rotating body (a rotating black hole operates slightly differently). Neither light nor particles can escape through this surface from the region inside, hence the name "black hole".

Black holes can be classified based on their Schwarzschild radius, or equivalently, by their density, where density is defined as mass of a black hole divided by the volume of its Schwarzschild sphere. As the Schwarzschild radius is linearly related to mass, while the enclosed volume corresponds to the third power of the radius, small black holes are therefore much more dense than large ones. The volume enclosed in the event horizon of the most massive black holes has an average density lower than main sequence stars.

Supermassive black hole

Template:Main A supermassive black hole (SMBH) is the largest type of black hole, though there are few official criteria on how such an object is considered so, on the order of hundreds of thousands to billions of solar masses. (Supermassive black holes up to 21 billion Template:Solar mass have been detected, such as NGC 4889.)[17] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the singularity itself.) With that in mind, the average density of a supermassive black hole can be less than the density of water.Template:Cn

The Schwarzschild radius of a body is proportional to its mass and therefore to its volume, assuming that the body has a constant mass-density.[18] In contrast, the physical radius of the body is proportional to the cube root of its volume. Therefore, as the body accumulates matter at a given fixed density (in this example, 997 kg/m3, the density of water), its Schwarzschild radius will increase more quickly than its physical radius. When a body of this density has grown to around 136 million solar masses (Template:Solar mass), its physical radius would be overtaken by its Schwarzschild radius, and thus it would form a supermassive black hole.

It is thought that supermassive black holes like these do not form immediately from the singular collapse of a cluster of stars. Instead they may begin life as smaller, stellar-sized black holes and grow larger by the accretion of matter, or even of other black holes.[19]

The Schwarzschild radius of the supermassive black hole at the Galactic Center of the Milky Way is approximately 12 million kilometres.[11] Its mass is about Template:Solar mass.

Stellar black hole

Template:Main Stellar black holes have much greater average densities than supermassive black holes. If one accumulates matter at nuclear density (the density of the nucleus of an atom, about 1018 kg/m3; neutron stars also reach this density), such an accumulation would fall within its own Schwarzschild radius at about Template:Solar mass and thus would be a stellar black hole.Template:Cn

Micro black hole

Template:Main Template:Original research A small mass has an extremely small Schwarzschild radius. A black hole of mass similar to that of Mount Everest,[20] Template:Val, would have a Schwarzschild radius much smaller than a nanometre.Template:Cn The Schwarzschild radius would be 2 × Template:Val × Template:Val / (Template:Val)2 = Template:Val = Template:Val. Its average density at that size would be so high that no known mechanism could form such extremely compact objects. Such black holes might possibly be formed in an early stage of the evolution of the universe, just after the Big Bang, when densities of matter were extremely high. Therefore, these hypothetical miniature black holes are called primordial black holes.Template:Cn

When moving to the Planck scale Template:Nobr, it is convenient to write the gravitational radius in the form rs=2(G/c3)Mc, (see also virtual black hole).[21]

Other uses

In gravitational time dilation

Gravitational time dilation near a large, slowly rotating, nearly spherical body, such as the Earth or Sun can be reasonably approximated as follows:[22] trt=1rsr where:

  • Template:Var is the elapsed time for an observer at radial coordinate r within the gravitational field;
  • Template:Var is the elapsed time for an observer distant from the massive object (and therefore outside of the gravitational field);
  • Template:Var is the radial coordinate of the observer (which is analogous to the classical distance from the center of the object);
  • Template:Math is the Schwarzschild radius.

Compton wavelength intersection

The Schwarzschild radius (2GM/c2) and the Compton wavelength (2π/Mc) corresponding to a given mass are similar when the mass is around one Planck mass (M=c/G), when both are of the same order as the Planck length (G/c3).

Gravitational radius and the Heisenberg Uncertainty Principle

rs=2GMc2=2Gc3Mc=2Gc3P02Gc32r=P2r.

Thus, rsrP2 or ΔrsΔrP2, which is another form of the Heisenberg uncertainty principle on the Planck scale. (See also Virtual black hole).[21][23]

Calculating the maximum volume and radius possible given a density before a black hole forms

The Schwarzschild radius equation can be manipulated to yield an expression that gives the largest possible radius from an input density that doesn't form a black hole. Taking the input density as Template:Math,

rs=3c28πGρ.

For example, the density of water is Template:Val. This means the largest amount of water you can have without forming a black hole would have a radius of 400 920 754 km (about 2.67 AU).

See also

Classification of black holes by type:

A classification of black holes by mass:

Notes

Template:Reflist

References

Template:Reflist

Template:Black holes