In mathematics, the q -Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme . Template:Harvs give a detailed list of their properties.
Definition
The polynomials are given in terms of basic hypergeometric functions by [ 1] :
y n ( x ; a ; q ) = 2 ϕ 1 ( q − n − a q n 0 ; q , q x ) .
Also known as alternative q-Charlier polynomials K ( x ; a ; q ) .
Orthogonality
∑ k = 0 ∞ ( a k ( q ; q ) n * q ( k + 1 2 ) * y m * ( q k ; a ; q ) * y n * ( q k ; a ; q ) ) = ( q ; q ) n * ( − a q n ; q ) ∞ a n * q ( n + 1 2 ) 1 + a q 2 n δ m n [ 2]
where ( q ; q ) n and ( − a q n ; q ) ∞ are q-Pochhammer symbols .
Gallery
QBessel function abs complex 3D Maple plot
QBessel function Im complex 3D Maple plot
QBessel function Re complex 3D Maple plot
QBessel function abs density Maple plot
QBessel function Im density Maple plot
QBessel function Re density Maple plot
References
Template:Reflist
↑ Roelof Koekoek, Peter Lesky Rene Swarttouw, Hypergeometric Orthogonal Polynomials and their q-Analogues, p526 Springer 2010
↑ Roelof p527