Rodion Kuzmin
Template:Short description Template:Infobox scientist Rodion Osievich Kuzmin (Template:Langx, 9 November 1891, Riabye village in the Haradok district – 24 March 1949, Leningrad) was a Soviet mathematician, known for his works in number theory and analysis.[1] His name is sometimes transliterated as Kusmin. He was an Invited Speaker of the ICM in 1928 in Bologna.[2]
Selected results
- In 1928, Kuzmin solved[3] the following problem due to Gauss (see Gauss–Kuzmin distribution): if x is a random number chosen uniformly in (0, 1), and
- is its continued fraction expansion, find a bound for
- where
- Gauss showed that Δn tends to zero as n goes to infinity, however, he was unable to give an explicit bound. Kuzmin showed that
- where C,α > 0 are numerical constants. In 1929, the bound was improved to C 0.7n by Paul Lévy.
- In 1930, Kuzmin proved[4] that numbers of the form ab, where a is algebraic and b is a real quadratic irrational, are transcendental. In particular, this result implies that Gelfond–Schneider constant
- is transcendental. See Gelfond–Schneider theorem for later developments.
- He is also known for the Kusmin-Landau inequality: If is continuously differentiable with monotonic derivative satisfying (where denotes the Nearest integer function) on a finite interval , then
Notes
External links
- Template:MathGenealogy (The chronology there is apparently wrong, since J. V. Uspensky lived in USA from 1929.)
- ↑ Template:Cite journal
- ↑ Kuzmin, R. "Sur un problème de Gauss." In Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, vol. 6, pp. 83–90. 1929.
- ↑ Template:Cite journal
- ↑ Template:Cite journal