Non-uniform random variate generation

From testwiki
Revision as of 16:27, 24 December 2024 by imported>Citation bot (Misc citation tidying. | Use this bot. Report bugs. | #UCB_CommandLine)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Use American English Template:Short description

Non-uniform random variate generation or pseudo-random number sampling is the numerical practice of generating pseudo-random numbers (PRN) that follow a given probability distribution. Methods are typically based on the availability of a uniformly distributed PRN generator. Computational algorithms are then used to manipulate a single random variate, X, or often several such variates, into a new random variate Y such that these values have the required distribution. The first methods were developed for Monte-Carlo simulations in the Manhattan project,Template:Citation needed published by John von Neumann in the early 1950s.[1]

Finite discrete distributions

For a discrete probability distribution with a finite number n of indices at which the probability mass function f takes non-zero values, the basic sampling algorithm is straightforward. The interval [0, 1) is divided in n intervals [0, f(1)), [f(1), f(1) + f(2)), ... The width of interval i equals the probability f(i). One draws a uniformly distributed pseudo-random number X, and searches for the index i of the corresponding interval. The so determined i will have the distribution f(i).

Formalizing this idea becomes easier by using the cumulative distribution function

F(i)=j=1if(j).

It is convenient to set F(0) = 0. The n intervals are then simply [F(0), F(1)), [F(1), F(2)), ..., [F(n − 1), F(n)). The main computational task is then to determine i for which F(i − 1) ≤ X < F(i).

This can be done by different algorithms:

Continuous distributions

Generic methods for generating independent samples:

Generic methods for generating correlated samples (often necessary for unusually-shaped or high-dimensional distributions):

For generating a normal distribution:

For generating a Poisson distribution:

Software libraries

GNU Scientific Library has a section entitled "Random Number Distributions" with routines for sampling under more than twenty different distributions.[5]

See also

Footnotes

Template:Reflist

Literature