Stericated 5-cubes

From testwiki
Revision as of 16:01, 5 April 2024 by imported>Nectapeton (Stericated 5-cube: added the mention of the dissection pattern throughout expanded hypercubes)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

5-cube
Template:CDD

Stericated 5-cube
Template:CDD

Steritruncated 5-cube
Template:CDD

Stericantellated 5-cube
Template:CDD

Steritruncated 5-orthoplex
Template:CDD

Stericantitruncated 5-cube
Template:CDD

Steriruncitruncated 5-cube
Template:CDD

Stericantitruncated 5-orthoplex
Template:CDD

Omnitruncated 5-cube
Template:CDD
Orthogonal projections in B5 Coxeter plane

In five-dimensional geometry, a stericated 5-cube is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-cube.

There are eight degrees of sterication for the 5-cube, including permutations of runcination, cantellation, and truncation. The simple stericated 5-cube is also called an expanded 5-cube, with the first and last nodes ringed, for being constructible by an expansion operation applied to the regular 5-cube. The highest form, the sterirunciTemplate:WbrcantitruncatedTemplate:Wbr 5-cube, is more simply called an omnitruncated 5-cube with all of the nodes ringed. Template:Clear

Stericated 5-cube

Stericated 5-cube
Type Uniform 5-polytope
Schläfli symbol 2r2r{4,3,3,3}
Coxeter-Dynkin diagram Template:CDD
Template:CDD
4-faces 242
Cells 800
Faces 1040
Edges 640
Vertices 160
Vertex figure
Coxeter group B5 [4,3,3,3]
Properties convex

Alternate names

  • Stericated penteract / Stericated 5-orthoplex / Stericated pentacross
  • Expanded penteract / Expanded 5-orthoplex / Expanded pentacross
  • Small cellated penteractitriacontaditeron (Acronym: scant) (Jonathan Bowers)[1]

Coordinates

The Cartesian coordinates of the vertices of a stericated 5-cube having edge length 2 are all permutations of:

(±1, ±1, ±1, ±1, ±(1+2))

Images

The stericated 5-cube is constructed by a sterication operation applied to the 5-cube.

Dissections

The stericated 5-cube can be dissected into two tesseractic cupolae and a runcinated tesseract between them. This dissection can be seen as analogous to the 4D runcinated tesseract being dissected into two cubic cupolae and a central rhombicuboctahedral prism between them, and also the 3D rhombicuboctahedron being dissected into two square cupolae with a central octagonal prism between them.Template:5-cube Coxeter plane graphs

Steritruncated 5-cube

Steritruncated 5-cube
Type uniform 5-polytope
Schläfli symbol t0,1,4{4,3,3,3}
Coxeter-Dynkin diagrams Template:CDD
4-faces 242
Cells 1600
Faces 2960
Edges 2240
Vertices 640
Vertex figure
Coxeter groups B5, [3,3,3,4]
Properties convex

Alternate names

  • Steritruncated penteract
  • Celliprismated triacontaditeron (Acronym: capt) (Jonathan Bowers)[2]

Construction and coordinates

The Cartesian coordinates of the vertices of a steritruncated 5-cube having edge length 2 are all permutations of:

(±1, ±(1+2), ±(1+2), ±(1+2), ±(1+22))

Images

Template:5-cube Coxeter plane graphs

Stericantellated 5-cube

Stericantellated 5-cube
Type Uniform 5-polytope
Schläfli symbol t0,2,4{4,3,3,3}
Coxeter-Dynkin diagram Template:CDD
Template:CDD
4-faces 242
Cells 2080
Faces 4720
Edges 3840
Vertices 960
Vertex figure
Coxeter group B5 [4,3,3,3]
Properties convex

Alternate names

  • Stericantellated penteract
  • Stericantellated 5-orthoplex, stericantellated pentacross
  • Cellirhombated penteractitriacontiditeron (Acronym: carnit) (Jonathan Bowers)[3]

Coordinates

The Cartesian coordinates of the vertices of a stericantellated 5-cube having edge length 2 are all permutations of:

(±1, ±1, ±1, ±(1+2), ±(1+22))

Images

Template:5-cube Coxeter plane graphs

Stericantitruncated 5-cube

Stericantitruncated 5-cube
Type Uniform 5-polytope
Schläfli symbol t0,1,2,4{4,3,3,3}
Coxeter-Dynkin
diagram
Template:CDD
4-faces 242
Cells 2400
Faces 6000
Edges 5760
Vertices 1920
Vertex figure
Coxeter group B5 [4,3,3,3]
Properties convex, isogonal

Alternate names

  • Stericantitruncated penteract
  • Steriruncicantellated triacontiditeron / Biruncicantitruncated pentacross
  • Celligreatorhombated penteract (cogrin) (Jonathan Bowers)[4]

Coordinates

The Cartesian coordinates of the vertices of a stericantitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:

(1, 1+2, 1+22, 1+22, 1+32)

Images

Template:5-cube Coxeter plane graphs

Steriruncitruncated 5-cube

Steriruncitruncated 5-cube
Type Uniform 5-polytope
Schläfli symbol 2t2r{4,3,3,3}
Coxeter-Dynkin
diagram
Template:CDD
Template:CDD
4-faces 242
Cells 2160
Faces 5760
Edges 5760
Vertices 1920
Vertex figure
Coxeter group B5 [4,3,3,3]
Properties convex, isogonal

Alternate names

  • Steriruncitruncated penteract / Steriruncitruncated 5-orthoplex / Steriruncitruncated pentacross
  • Celliprismatotruncated penteractitriacontiditeron (captint) (Jonathan Bowers)[5]

Coordinates

The Cartesian coordinates of the vertices of a steriruncitruncated penteract having an edge length of 2 are given by all permutations of coordinates and sign of:

(1, 1+2, 1+12, 1+22, 1+32)

Images

Template:5-cube Coxeter plane graphs

Steritruncated 5-orthoplex

Steritruncated 5-orthoplex
Type uniform 5-polytope
Schläfli symbol t0,1,4{3,3,3,4}
Coxeter-Dynkin diagrams Template:CDD
4-faces 242
Cells 1520
Faces 2880
Edges 2240
Vertices 640
Vertex figure
Coxeter group B5, [3,3,3,4]
Properties convex

Alternate names

  • Steritruncated pentacross
  • Celliprismated penteract (Acronym: cappin) (Jonathan Bowers)[6]

Coordinates

Cartesian coordinates for the vertices of a steritruncated 5-orthoplex, centered at the origin, are all permutations of

(±1, ±1, ±1, ±1, ±(1+2))

Images

Template:5-cube Coxeter plane graphs

Stericantitruncated 5-orthoplex

Stericantitruncated 5-orthoplex
Type Uniform 5-polytope
Schläfli symbol t0,2,3,4{4,3,3,3}
Coxeter-Dynkin
diagram
Template:CDD
4-faces 242
Cells 2320
Faces 5920
Edges 5760
Vertices 1920
Vertex figure
Coxeter group B5 [4,3,3,3]
Properties convex, isogonal

Alternate names

  • Stericantitruncated pentacross
  • Celligreatorhombated triacontaditeron (cogart) (Jonathan Bowers)[7]

Coordinates

The Cartesian coordinates of the vertices of a stericantitruncated 5-orthoplex having an edge length of 2 are given by all permutations of coordinates and sign of:

(1, 1, 1+2, 1+22, 1+32)

Images

Template:5-cube Coxeter plane graphs

Omnitruncated 5-cube

Omnitruncated 5-cube
Type Uniform 5-polytope
Schläfli symbol tr2r{4,3,3,3}
Coxeter-Dynkin
diagram
Template:CDD
Template:CDD
4-faces 242
Cells 2640
Faces 8160
Edges 9600
Vertices 3840
Vertex figure
irr. {3,3,3}
Coxeter group B5 [4,3,3,3]
Properties convex, isogonal

Alternate names

  • Steriruncicantitruncated 5-cube (Full expansion of omnitruncation for 5-polytopes by Johnson)
  • Omnitruncated penteract
  • Omnitruncated triacontiditeron / omnitruncated pentacross
  • Great cellated penteractitriacontiditeron (Jonathan Bowers)[8]

Coordinates

The Cartesian coordinates of the vertices of an omnitruncated 5-cube having an edge length of 2 are given by all permutations of coordinates and sign of:

(1, 1+2, 1+22, 1+32, 1+42)

Images

Template:5-cube Coxeter plane graphs

Full snub 5-cube

The full snub 5-cube or omnisnub 5-cube, defined as an alternation of the omnitruncated 5-cube is not uniform, but it can be given Coxeter diagram Template:CDD and symmetry [4,3,3,3]+, and constructed from 10 snub tesseracts, 32 snub 5-cells, 40 snub cubic antiprisms, 80 snub tetrahedral antiprisms, 80 3-4 duoantiprisms, and 1920 irregular 5-cells filling the gaps at the deleted vertices.

This polytope is one of 31 uniform 5-polytopes generated from the regular 5-cube or 5-orthoplex.

Template:Penteract family

Notes

Template:Reflist

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, editied by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Template:KlitzingPolytopes x3o3o3o4x - scan, x3o3o3x4x - capt, x3o3x3o4x - carnit, x3o3x3x4x - cogrin, x3x3o3x4x - captint, x3x3x3x4x - gacnet, x3x3x3o4x - cogart

Template:Polytopes

  1. Klitzing, (x3o3o3o4x - scant)
  2. Klitzing, (x3o3o3x4x - capt)
  3. Klitzing, (x3o3x3o4x - carnit)
  4. Klitzing, (x3o3x3x4x - cogrin)
  5. Klitzing, (x3x3o3x4x - captint)
  6. Klitzing, (x3x3o3o4x - cappin)
  7. Klitzing, (x3x3x3o4x - cogart)
  8. Klitzing, (x3x3x3x4x - gacnet)