Antifragility

From testwiki
Revision as of 19:25, 23 February 2025 by imported>Seamlessly (added to Category:Reliability engineering)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description Antifragility is a property of systems in which they increase in capability to thrive as a result of stressors, shocks, volatility, noise, mistakes, faults, attacks, or failures. The concept was developed by Nassim Nicholas Taleb in his book, Antifragile, and in technical papers.[1][2] As Taleb explains in his book, antifragility is fundamentally different from the concepts of resiliency (i.e. the ability to recover from failure) and robustness (that is, the ability to resist failure). The concept has been applied in risk analysis,[3][4] physics,[5] molecular biology,[6][7] transportation planning,[8][9] engineering,[10][11][12] aerospace (NASA),[13] and computer science.[11][14][15][16]

Taleb defines it as follows in a letter to Nature responding to an earlier review of his book in that journal: Template:Blockquote

Antifragile versus robust/resilient

In his book, Taleb stresses the differences between antifragile and robust/resilient. "Antifragility is beyond resilience or robustness. The resilient resists shocks and stays the same; the antifragile gets better."[1] The concept has now been applied to ecosystems in a rigorous way.[17] In their work, the authors review the concept of ecosystem resilience in its relation to ecosystem integrity from an information theory approach. This work reformulates and builds upon the concept of resilience in a way that is mathematically conveyed and can be heuristically evaluated in real-world applications: for example, ecosystem antifragility. The authors also propose that for socio-ecosystem governance, planning or in general, any decision making perspective, antifragility might be a valuable and more desirable goal to achieve than a resilience aspiration. In the same way, Pineda and co-workers[18] have proposed a simply calculable measure of antifragility, based on the change of “satisfaction” (i.e., network complexity) before and after adding perturbations, and apply it to random Boolean networks (RBNs). They also show that several well known biological networks such as Arabidopsis thaliana cell-cycle are as expected antifragile.

Antifragile versus adaptive/cognitive

An adaptive system is one that changes its behavior based on information available at time of utilization (as opposed to having the behavior defined during system design). This characteristic is sometimes referred to as cognitive. While adaptive systems allow for robustness under a variety of scenarios (often unknown during system design), they are not necessarily antifragile. In other words, the difference between adaptive and antifragile is the difference between a system that is robust under volatile environments/conditions, and one that is robust in a previously unknown environment.Template:Clarify

Mathematical heuristic

Taleb proposed a simple heuristic[19] for detecting fragility. If f(a) is some model of a, then fragility exists when H<0, robustness exists when H=0, and antifragility exists when H>0, where

H=f(aΔ)+f(a+Δ)2f(a).

In short, the heuristic is to adjust a model input higher and lower. If the average outcome of the model after the adjustments is significantly worse than the model baseline, then the model is fragile with respect to that input.

Applications

The concept has been applied in business and management,[20] physics,[5] risk analysis,[4][21] molecular biology,[7][22] transportation planning,[8][23] urban planning,[24][25][26] engineering,[11][12][10] aerospace (NASA),[13] computer science,[11][14][15][16][27] water system design,[28] and cancer.[29][30]

In computer science, there is a structured proposal for an "Antifragile Software Manifesto", to react to traditional system designs.[31] The major idea is to develop antifragility by design, building a system which improves from environment's input.

See also

Template:Portal

References

Template:Reflist Template:Nassim Nicholas Taleb

  1. 1.0 1.1 Template:Cite book,
  2. Template:Cite journal
  3. Template:Cite journal
  4. 4.0 4.1 Template:Cite journal
  5. 5.0 5.1 Naji, A., Ghodrat, M., Komaie-Moghaddam, H., & Podgornik, R. (2014). Asymmetric Coulomb fluids at randomly charged dielectric interfaces: Anti-fragility, overcharging and charge inversion. J. Chem. Phys. 141 174704.
  6. Template:Cite journal
  7. 7.0 7.1 Template:Cite book
  8. 8.0 8.1 Levin, J. S., Brodfuehrer, S. P., & Kroshl, W. M. (2014, March). Detecting antifragile decisions and models lessons from a conceptual analysis model of Service Life Extension of aging vehicles. In Systems Conference (SysCon), 2014 8th Annual IEEE (pp. 285-292). IEEE.
  9. Isted, R. (2014, August). The use of antifragility heuristics in transport planning. In Australian Institute of Traffic Planning and Management (AITPM) National Conference, 2014, Adelaide, South Australia, Australia (No. 3).
  10. 10.0 10.1 Template:Cite journal
  11. 11.0 11.1 11.2 11.3 Template:Cite journal
  12. 12.0 12.1 Template:Cite journal
  13. 13.0 13.1 Jones, Kennie H. "Antifragile Systems: An Enabler for System Engineering of Elegant Systems." (2015), NASA, [1]
  14. 14.0 14.1 Ramirez, C. A., & Itoh, M. (2014, September). An initial approach towards the implementation of human error identification services for antifragile systems. In SICE Annual Conference (SICE), 2014 Proceedings of the (pp. 2031-2036). IEEE.
  15. 15.0 15.1 Template:Cite journal
  16. 16.0 16.1 Template:Cite journal
  17. Template:Cite journal
  18. Template:Cite journal
  19. Template:Cite journal
  20. Template:Cite journal
  21. Template:Cite journal
  22. Template:Cite journal
  23. Template:Cite journal
  24. Template:Cite journal
  25. Template:Cite journal
  26. Template:Cite journal
  27. Template:Cite journal
  28. Template:Cite journal
  29. Template:Cite journal
  30. Template:Cite journal
  31. Template:Cite journal