Eisenbud–Levine–Khimshiashvili signature formula
Template:Short description In mathematics, and especially differential topology and singularity theory, the Eisenbud–Levine–Khimshiashvili signature formula gives a way of computing the Poincaré–Hopf index of a real, analytic vector field at an algebraically isolated singularity.[1][2] It is named after David Eisenbud, Harold I. Levine, and George Khimshiashvili. Intuitively, the index of a vector field near a zero is the number of times the vector field wraps around the sphere. Because analytic vector fields have a rich algebraic structure, the techniques of commutative algebra can be brought to bear to compute their index. The signature formula expresses the index of an analytic vector field in terms of the signature of a certain quadratic form.
Nomenclature
Consider the n-dimensional space Rn. Assume that Rn has some fixed coordinate system, and write x for a point in Rn, where Template:Nowrap
Let X be a vector field on Rn. For Template:Nowrap there exist functions Template:Nowrap such that one may express X as
To say that X is an analytic vector field means that each of the functions Template:Nowrap is an analytic function. One says that X is singular at a point p in Rn (or that p is a singular point of X) if Template:Nowrap, i.e. X vanishes at p. In terms of the functions Template:Nowrap it means that Template:Nowrap for all Template:Nowrap. A singular point p of X is called isolated (or that p is an isolated singularity of X) if Template:Nowrap and there exists an open neighbourhood Template:Nowrap, containing p, such that Template:Nowrap for all q in U, different from p. An isolated singularity of X is called algebraically isolated if, when considered over the complex domain, it remains isolated.[3][4]
Since the Poincaré–Hopf index at a point is a purely local invariant (cf. Poincaré–Hopf theorem), one may restrict one's study to that of germs. Assume that each of the ƒk from above are function germs, i.e. Template:Nowrap In turn, one may call X a vector field germ.
Construction
Let An,0 denote the ring of analytic function germs Template:Nowrap. Assume that X is a vector field germ of the form
with an algebraically isolated singularity at 0. Where, as mentioned above, each of the ƒk are function germs Template:Nowrap. Denote by IX the ideal generated by the ƒk, i.e. Template:Nowrap Then one considers the local algebra, BX, given by the quotient
The Eisenbud–Levine–Khimshiashvili signature formula states that the index of the vector field X at 0 is given by the signature of a certain non-degenerate bilinear form (to be defined below) on the local algebra BX.[2][4][5]
The dimension of is finite if and only if the complexification of X has an isolated singularity at 0 in Cn; i.e. X has an algebraically isolated singularity at 0 in Rn.[2] In this case, BX will be a finite-dimensional, real algebra.
Definition of the bilinear form
Using the analytic components of X, one defines another analytic germ Template:Nowrap given by
for all Template:Nowrap. Let Template:Nowrap denote the determinant of the Jacobian matrix of F with respect to the basis Template:Nowrap Finally, let Template:Nowrap denote the equivalence class of JF, modulo IX. Using ∗ to denote multiplication in BX one is able to define a non-degenerate bilinear form β as follows:[2][4]
where is any linear function such that
As mentioned: the signature of β is exactly the index of X at 0.
Example
Consider the case Template:Nowrap of a vector field on the plane. Consider the case where X is given by
Clearly X has an algebraically isolated singularity at 0 since Template:Nowrap if and only if Template:Nowrap The ideal IX is given by Template:Nowrap and
The first step for finding the non-degenerate, bilinear form β is to calculate the multiplication table of BX; reducing each entry modulo IX. Whence
| ∗ | 1 | x | y | x2 | xy | y2 | xy2 | y3 | y4 |
|---|---|---|---|---|---|---|---|---|---|
| 1 | 1 | x | y | x2 | xy | y2 | xy2 | y3 | y4 |
| x | x | x2 | xy | 3xy3 | y3/3 | xy2 | y4/3 | 0 | 0 |
| y | y | xy | y2 | y3/3 | xy2 | y3 | 0 | y4 | 0 |
| x2 | x2 | 3xy2 | y3/3 | y4 | 0 | y4/3 | 0 | 0 | 0 |
| xy | xy | y3/3 | xy2 | 0 | y4/3 | 0 | 0 | 0 | 0 |
| y2 | y2 | xy2 | y3 | y4/3 | 0 | y4 | 0 | 0 | 0 |
| xy2 | xy2 | y4/3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| y3 | y3 | 0 | y4 | 0 | 0 | 0 | 0 | 0 | 0 |
| y4 | y4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Direct calculation shows that Template:Nowrap, and so Template:Nowrap Next one assigns values for . One may take
This choice was made so that as was required by the hypothesis, and to make the calculations involve integers, as opposed to fractions. Applying this to the multiplication table gives the matrix representation of the bilinear form β with respect to the given basis: The eigenvalues of this matrix are Template:Nowrap There are 3 negative eigenvalues (Template:Nowrap), and six positive eigenvalues (Template:Nowrap); meaning that the signature of β is Template:Nowrap. It follows that X has Poincaré–Hopf index +3 at the origin.
Topological verification
With this particular choice of X it is possible to verify the Poincaré–Hopf index is +3 by a direct application of the definition of Poincaré–Hopf index.[6] This is very rarely the case, and was the reason for the choice of example. If one takes polar coordinates on the plane, i.e. Template:Nowrap and Template:Nowrap then Template:Nowrap and Template:Nowrap Restrict X to a circle, centre 0, radius Template:Nowrap, denoted by C0,ε; and consider the map Template:Nowrap given by
The Poincaré–Hopf index of X is, by definition, the topological degree of the map G.[6] Restricting X to the circle C0,ε, for arbitrarily small ε, gives
meaning that as θ makes one rotation about the circle C0,ε in an anti-clockwise direction; the image G(θ) makes three complete, anti-clockwise rotations about the unit circle C0,1. Meaning that the topological degree of G is +3 and that the Poincaré–Hopf index of X at 0 is +3.[6]