Cantellated 7-simplexes

From testwiki
Revision as of 05:33, 26 December 2017 by imported>Tomruen
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

7-simplex
Template:CDD

Cantellated 7-simplex
Template:CDD

Bicantellated 7-simplex
Template:CDD

Tricantellated 7-simplex
Template:CDD

Birectified 7-simplex
Template:CDD

Cantitruncated 7-simplex
Template:CDD

Bicantitruncated 7-simplex
Template:CDD

Tricantitruncated 7-simplex
Template:CDD
Orthogonal projections in A7 Coxeter plane

In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.

There are unique 6 degrees of cantellation for the 7-simplex, including truncations.

Cantellated 7-simplex

Cantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol rr{3,3,3,3,3,3}
or r{3,3,3,3,33}
Coxeter-Dynkin diagram Template:CDD
or Template:CDD
6-faces
5-faces
4-faces
Cells
Faces
Edges 1008
Vertices 168
Vertex figure 5-simplex prism
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

  • Small rhombated octaexon (acronym: saro) (Jonathan Bowers)[1]

Coordinates

The vertices of the cantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,1,2). This construction is based on facets of the cantellated 8-orthoplex.

Images

Template:7-simplex Coxeter plane graphs

Bicantellated 7-simplex

Bicantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol r2r{3,3,3,3,3,3}
or r{3,3,3,33,3}
Coxeter-Dynkin diagrams Template:CDD
or Template:CDD
6-faces
5-faces
4-faces
Cells
Faces
Edges 2520
Vertices 420
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

  • Small birhombated octaexon (acronym: sabro) (Jonathan Bowers)[2]

Coordinates

The vertices of the bicantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 8-orthoplex.

Images

Template:7-simplex Coxeter plane graphs

Tricantellated 7-simplex

Tricantellated 7-simplex
Type uniform 7-polytope
Schläfli symbol r3r{3,3,3,3,3,3}
or r{3,3,33,3,3}
Coxeter-Dynkin diagrams Template:CDD
or Template:CDD
6-faces
5-faces
4-faces
Cells
Faces
Edges 3360
Vertices 560
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

  • Small trirhombihexadecaexon (stiroh) (Jonathan Bowers)[3]

Coordinates

The vertices of the tricantellated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,1,2,2,2). This construction is based on facets of the tricantellated 8-orthoplex.

Images

Template:7-simplex Coxeter plane graphs

Cantitruncated 7-simplex

Cantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol tr{3,3,3,3,3,3}
or t{3,3,3,3,33}
Coxeter-Dynkin diagrams Template:CDD
Template:CDD
6-faces
5-faces
4-faces
Cells
Faces
Edges 1176
Vertices 336
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

  • Great rhombated octaexon (acronym: garo) (Jonathan Bowers)[4]

Coordinates

The vertices of the cantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 8-orthoplex.

Images

Template:7-simplex Coxeter plane graphs

Bicantitruncated 7-simplex

Bicantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t2r{3,3,3,3,3,3}
or t{3,3,3,33,3}
Coxeter-Dynkin diagrams Template:CDD
or Template:CDD
6-faces
5-faces
4-faces
Cells
Faces
Edges 2940
Vertices 840
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

  • Great birhombated octaexon (acronym: gabro) (Jonathan Bowers)[5]

Coordinates

The vertices of the bicantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 8-orthoplex.

Images

Template:7-simplex Coxeter plane graphs

Tricantitruncated 7-simplex

Tricantitruncated 7-simplex
Type uniform 7-polytope
Schläfli symbol t3r{3,3,3,3,3,3}
or t{3,3,33,3,3}
Coxeter-Dynkin diagrams Template:CDD
or Template:CDD
6-faces
5-faces
4-faces
Cells
Faces
Edges 3920
Vertices 1120
Vertex figure
Coxeter groups A7, [3,3,3,3,3,3]
Properties convex

Alternate names

  • Great trirhombihexadecaexon (acronym: gatroh) (Jonathan Bowers)[6]

Coordinates

The vertices of the tricantitruncated 7-simplex can be most simply positioned in 8-space as permutations of (0,0,0,1,2,3,4,4). This construction is based on facets of the tricantitruncated 8-orthoplex.

Images

Template:7-simplex2 Coxeter plane graphs

This polytope is one of 71 uniform 7-polytopes with A7 symmetry. Template:Octaexon family

See also

Notes

Template:Reflist

References

  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, Template:ISBN [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D.
  • Template:KlitzingPolytopes x3o3x3o3o3o3o - saro, o3x3o3x3o3o3o - sabro, o3o3x3o3x3o3o - stiroh, x3x3x3o3o3o3o - garo, o3x3x3x3o3o3o - gabro, o3o3x3x3x3o3o - gatroh

Template:Polytopes

  1. Klitizing, (x3o3x3o3o3o3o - saro)
  2. Klitizing, (o3x3o3x3o3o3o - sabro)
  3. Klitizing, (o3o3x3o3x3o3o - stiroh)
  4. Klitizing, (x3x3x3o3o3o3o - garo)
  5. Klitizing, (o3x3x3x3o3o3o - gabro)
  6. Klitizing, (o3o3x3x3x3o3o - gatroh)