Christensen failure criterion

From testwiki
Revision as of 00:13, 7 January 2024 by imported>BD2412 (clean up spacing around commas and other punctuation fixes, replaced: ,h → , h)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

The Christensen failure criterion is a material failure theory for isotropic materials that attempts to span the range from ductile to brittle materials.[1] It has a two-property form calibrated by the uniaxial tensile and compressive strengths T (σT) and C (σC).

The theory was developed by Stanford professor Richard. M. Christensen and first published in 1997.[2][3]

Description

The Christensen failure criterion is composed of two separate subcriteria representing competitive failure mechanisms. when expressed in principal stress components, it is given by :

Polynomial invariants failure criterion

For 0TC1

Template:NumBlk

Coordinated Fracture Criterion

For 0TC12 Template:NumBlk

A criteron illustrated
For plane stresses,σ3=0 and T/C=0.3(brittle materials). Blue line is polynomial invariants failure criterion (Template:EquationNote). Red lines are coordinated fracture criterion(Template:EquationNote).

The geometric form of (Template:EquationNote) is that of a paraboloid in principal stress space. The fracture criterion (Template:EquationNote) (applicable only over the partial range 0 ≤ T/C ≤ 1/2 ) cuts slices off the paraboloid, leaving three flattened elliptical surfaces on it. The fracture cutoff is vanishingly small at T/C=1/2 but it grows progressively larger as T/C diminishes.

The organizing principle underlying the theory is that all isotropic materials admit a distinct classification system based upon their T/C ratio. The comprehensive failure criterion (Template:EquationNote) and (Template:EquationNote) reduces to the Mises criterion at the ductile limit, T/C = 1. At the brittle limit, T/C = 0, it reduces to a form that cannot sustain any tensile components of stress.

Many cases of verification have been examined over the complete range of materials from extremely ductile to extremely brittle types.[1] Also, examples of applications have been given. Related criteria distinguishing ductile from brittle failure behaviors have been derived and interpreted.

Applications have been given by Ha[4] to the failure of the isotropic, polymeric matrix phase in fiber composite materials.

See also

References

Template:Reflist

  1. 1.0 1.1 Christensen, R. M., (2010), http://www.failurecriteria.com.
  2. Christensen, R.M. (1997).Yield Functions/Failure Criteria for Isotropic Materials, Pro. Royal Soc. London, Vol. 453, No. 1962, pp. 1473–1491
  3. Christensen, R.M. (2007), A Comprehensive Theory of Yielding and Failure for Isotropic Materials, J. Engr. Mater. and Technol., 129, 173–181
  4. S. K. Ha, K. K. Jin and Y. C. Huang, (2008), Micro-Mechanics of Failure (MMF) for Continuous Fiber Reinforced Composites. Journal of Composite Materials, vol. 42, no. 18, pp. 1873–1895.