Durfee square

From testwiki
Revision as of 09:10, 9 June 2024 by imported>Darcourse (See also: used to prove c_0(x)=1.)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description In number theory, a Durfee square is an attribute of an integer partition. A partition of n has a Durfee square of size s if s is the largest number such that the partition contains at least s parts with values ≥ s.[1] An equivalent, but more visual, definition is that the Durfee square is the largest square that is contained within a partition's Ferrers diagram.[2] The side-length of the Durfee square is known as the rank of the partition.[3]

The Durfee symbol consists of the two partitions represented by the points to the right or below the Durfee square.

Examples

The partition 4 + 3 + 3 + 2 + 1 + 1:

****
***
***
**
*
*

has a Durfee square of side 3 (in red) because it contains 3 parts that are ≥ 3, but does not contain 4 parts that are ≥ 4. Its Durfee symbol consists of the 2 partitions 1 and 2+1+1.

History

Durfee squares are named after William Pitt Durfee, a student of English mathematician James Joseph Sylvester. In a letter to Arthur Cayley in 1883, Sylvester wrote:[4]

Template:Quote

Generating function

The Durfee square method leads to this generating function for the integer partitions:

P(x)=k=0xk2i=1k(1xi)2

where xk2 is the size of the Durfee square, and (1xi)2 represents the two sections to the right and below a Durfee square of size k (being two partitions into parts of size at most k, equivalently partitions with at most k parts).[5]

Properties

It is clear from the visual definition that the Durfee square of a partition and its conjugate partition have the same size. The partitions of an integer n contain Durfee squares with sides up to and including n.

See also

References

Template:Reflist