Unknotting number

From testwiki
Revision as of 17:34, 27 September 2023 by imported>Vstephen B
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Template:Short description

Trefoil knot without 3-fold symmetry being unknotted by one crossing switch.
Whitehead link being unknotted by undoing one crossing

In the mathematical area of knot theory, the unknotting number of a knot is the minimum number of times the knot must be passed through itself (crossing switch) to untie it. If a knot has unknotting number n, then there exists a diagram of the knot which can be changed to unknot by switching n crossings.[1] The unknotting number of a knot is always less than half of its crossing number.[2] This invariant was first defined by Hilmar Wendt in 1936.[3]

Any composite knot has unknotting number at least two, and therefore every knot with unknotting number one is a prime knot. The following table show the unknotting numbers for the first few knots:

In general, it is relatively difficult to determine the unknotting number of a given knot. Known cases include:

  • The unknotting number of a nontrivial twist knot is always equal to one.
  • The unknotting number of a (p,q)-torus knot is equal to (p1)(q1)/2.[4]
  • The unknotting numbers of prime knots with nine or fewer crossings have all been determined.[5] (The unknotting number of the 1011 prime knot is unknown.)

Other numerical knot invariants

See also

References

Template:Reflist

Template:Knot theory

Template:Knottheory-stub